K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2015

ta có  góc DFC=DBC(2 góc đồng vị) Mà DFC = FCB (DF// BC ; 2 góc so le trong) =>DBC=FCB .Mà ABC=ACB( tg ABC cân) =>FBD=DCF  Xét 2 tg AFC;tg ADB      Góc A chung     AC=AB   FBD =DCF(cmt) =>tg AFC= tg ADB(g-c-g)

22 tháng 6 2017

lam tiep di

28 tháng 10 2021

image

a) Do DF//BC⇒ˆAFD=ˆABCDF//BC⇒AFD^=ABC^ (hai góc ở vị trí đồng vị)

ˆADF=ˆACBADF^=ACB^ (hai góc ở vị trí đồng vị)

mà ΔABCΔABC cân đỉnh A nên ˆABC=ˆACBABC^=ACB^

⇒ˆAFD=ˆADF⇒ΔAFD⇒AFD^=ADF^⇒ΔAFD cân đỉnh A

⇒AF=AD⇒AF=AD

Xét ΔAFCΔAFC và ΔADBΔADB có:

AF=ADAF=AD (cmt)

ˆAA^ chung

AC=ABAC=AB (do ΔABCΔABC cân đỉnh A)

⇒ΔAFC=ΔADB⇒ΔAFC=ΔADB (c.g.c) (đpcm)

b) ⇒ˆACF=ˆABD⇒ACF^=ABD^ (hai góc tương ứng)

⇒ˆABC−ˆABD=ˆACB−ˆACF⇒ABC^−ABD^=ACB^−ACF^

⇒ˆDBC=ˆFCB⇒DBC^=FCB^

⇒ΔOBC⇒ΔOBC cân đỉnh O mà ˆCBD=60oCBD^=60o (giả thiết)

⇒ΔOBC⇒ΔOBC đều

c) Xét ΔABCΔABC cân đỉnh A có:

ˆABC=180o−ˆA2=80oABC^=180o−A^2=80o

Áp dụng tính chất tổng ba góc trong 1 tam giác vào ΔBCEΔBCE ta có:

ˆBEC+ˆBCE+ˆEBC=180oBEC^+BCE^+EBC^=180o

⇒ˆBEC=180o−(ˆBCE+ˆEBC)⇒BEC^=180o−(BCE^+EBC^)

=180o−(50o+80o)=50o=180o−(50o+80o)=50o

⇒ˆBEC=ˆBCE=50o⇒ΔBCE⇒BEC^=BCE^=50o⇒ΔBCE cân đỉnh B

⇒BE=BC⇒BE=BC mà BO=BCBO=BC (do ΔOBCΔOBC đều)

⇒BE=BO⇒ΔBEO⇒BE=BO⇒ΔBEO cân đỉnh B

⇒ˆEOB=180o−ˆEBO2=180o−20o2=80o⇒EOB^=180o−EBO^2=180o−20o2=80o

(ˆEBO=ˆEBC−ˆOBC)=80o−60o=20o(EBO^=EBC^−OBC^)=80o−60o=20o

d) Xét ΔFBCΔFBC có: ˆBFC=180o−ˆFBC−ˆFCBBFC^=180o−FBC^−FCB^

=180o−80o−60o=40o=180o−80o−60o=40o

ˆEOF=180o−ˆEOB−ˆBOC=180o−80o−60o=40oEOF^=180o−EOB^−BOC^=180o−80o−60o=40o

⇒ˆEFO=ˆEOF=40o⇒ΔEFO⇒EFO^=EOF^=40o⇒ΔEFO cân đỉnh E ⇒EF=EO⇒EF=EO (1)

Ta có: ΔODFΔODF có: ˆFOD=ˆBOC=60oFOD^=BOC^=60o (đối đỉnh)

ˆDFO=ˆOBC=60oDFO^=OBC^=60o (hai góc ở vị trí so le trong)

⇒ΔODF⇒ΔODF đều ⇒DF=DO⇒DF=DO (2)

Và DEDE chung (3)

Từ (1), (2) và (3) suy ra ΔEFD=ΔEODΔEFD=ΔEOD (c.c.c) (đpcm)

chúc bạn học tốt

28 tháng 10 2021

Hay bị lặp lại  từ 😀😀😀😀

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0