\(\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\le3\sqrt{3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

thử a=b=c=1/3 -->đề sai

24 tháng 5 2018

Bài này sai rồi nha bn!!

Áp dụng bdt Bunhiacopski

\(\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}<=\sqrt{3*(12-(a^2+b^2+c^2))} a^2+b^2+c^2>=(a+b+c)^2/3 = 1/3 <\sqrt{35} \)

Vậy là phải bé hơn hoặc bằng căn 35 mới đúng đề!

22 tháng 8 2020

Bất đẳng thức cần chứng minh tương đương \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le2.\sqrt{2}.\sqrt[3]{9}\)

Ta quy bài toán về chứng minh hai bất đẳng thức sau 

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le3\sqrt{2}\)và \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)

Áp dụng bất đẳng thức Bunyakovsky ta được \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{6\left(a^2+b^2+c^2\right)}\)\(\le\sqrt{6\sqrt{3\left(a^4+b^4+c^4\right)}}\le3\sqrt{2}\)

Mặt khác ta lại có \(\left[\left(x^3+y^3+z^3\right)\left(x+y+z\right)\right]^2\ge\left(x^2+y^2+z^2\right)^4\)\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Do đó ta được \(\left(x^3+y^3+z^3\right)^2\ge\frac{\left(x^2+y^2+z^2\right)^3}{3}\)

Áp dụng kết quả trên ta thu được \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right]^3\)

Mà theo bất đẳng thức Cauchy-Schwarz ta có\(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{1}{2\left(a^2+b^2\right)}+\frac{1}{2\left(b^2+c^2\right)}+\frac{1}{2\left(c^2+a^2\right)}\) \(\ge\frac{9}{4\left(a^2+b^2+c^2\right)}\ge\frac{9}{4\sqrt{3\left(a^4+b^4+c^4\right)}}\ge\frac{9}{4\sqrt{9}}=\frac{3}{4}\)

Do đó ta có \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{3}{4}\right]^3=\frac{9}{64}\)

Suy ra \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)

Từ các kết quả trên ta được \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le\frac{3\sqrt{2}}{\frac{\sqrt[3]{3}}{2}}=2.\sqrt{2}.\sqrt[3]{9}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

1 tháng 11 2019

Áp dụng bất đẳng thức Cauchy - Schwarz

\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)

Và 

\(VT^2=\left(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\right)^2\)

\(\le\left(5a+4+5b+4+5c+4\right)\left(1+1+1\right)\)

\(\Leftrightarrow VT^2\le15\left(a+b+c\right)+36\)

Mà \(3\le a+b+c\left(cmt\right)\)

\(\Rightarrow VT^2\le15\left(a+b+c\right)+12\left(a+b+c\right)=27\left(a+b+c\right)\)

\(\Rightarrow VT\le3\sqrt{3\left(a+b+c\right)}\)

Ta có đpcm

Dấu " = " xảy ra khi \(a=b=c=1\)

29 tháng 5 2019

\(P=\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\)

\(\Rightarrow2\sqrt{3}P=\Sigma2\sqrt{3}\sqrt{4-a^2}\)\(=\Sigma2\sqrt{\left(a+b+c\right)\left(4-a^2\right)}\)

Vì \(a,b,c\in\left[-2,2\right]\Rightarrow\) \(\left\{{}\begin{matrix}4-a^2\ge0\\4-b^2\ge0\\4-c^2\ge0\end{matrix}\right.\)

Áp dụng BĐT AM-GM cho các số không âm, ta có:

\(\left(a+b+c\right)+\left(4-a^2\right)\ge2\sqrt{\left(a+b+c\right)\left(4-a^2\right)}\)

\(\Rightarrow2\sqrt{3}P\le\Sigma\left(a+b+c\right)+\left(4-a^2\right)\)

\(\Leftrightarrow2\sqrt{3}P\le3\left(a+b+c\right)+12-\left(a^2+b^2+c^2\right)\)

\(\Rightarrow2\sqrt{3}P\le21-\frac{\left(a+b+c\right)^2}{3}=21-\frac{9}{3}=18\)

\(\Rightarrow P\le3\sqrt{3}\)

\(''=''\Leftrightarrow a=b=c=1\)

10 tháng 6 2019

cảm ơn bạn nhiều

11 tháng 7 2019

Bài 3:(dài quá,đăng từ câu):

a)Từ giả thiết suy ra \(\frac{\left(a+b+c\right)^2}{3}\ge3\Rightarrow a+b+c\ge3\)

BĐT \(\Leftrightarrow\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(VT\ge3\left(a^3+b^3+c^3\right)\). Do đó ta chứng minh một BĐT chặt hơn là:

\(3\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)

\(\Leftrightarrow\left(a^3+b^3+c^3-3abc\right)+2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(c+b\right)+ca\left(c+a\right)\right]\) (*)

Để ý rằng theo Cô si: \(a^3+b^3+c^3\ge3abc\) (1) và

\(2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\ge0\) (2)

Do \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\)

\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\). Tương tự với hai BĐT còn lại suy ra (2) đúng (3)

Từ (1) và (2) và (3) suy ra (*) đúng hay ta có đpcm.

11 tháng 7 2019

Bài ngắn làm trước:

Bài 5: Dự đoán xảy ra đẳng thức khi a=1; b=2/3; c=4/3. Ta biến đổi như sau:

\(A=\left(4a^2+4\right)+\left(6b^2+\frac{8}{3}\right)+\left(3c^2+\frac{16}{3}\right)-12\)

\(\ge2\sqrt{4a^2.4}+2\sqrt{6b^2.\frac{8}{3}}+2\sqrt{3c^2.\frac{16}{3}}-12\)

\(=8\left(a+b+c\right)-12=8.3-12=12\)

Dấu "=" xảy ra khi ....

Bài này dùng wolfram alpha cho lẹ, đi thi không dùng được thì em dùng "cân bằng hệ số"

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Lời giải:

\(a+b+c=4; b,c>0\Rightarrow a=4-b-c< 4\)

\(\Rightarrow a^4< 4a^3\)

\(\Rightarrow \frac{a^4}{4}< a^3\Rightarrow \frac{a}{\sqrt[4]{4}}< \sqrt[4]{a^3}\). Hoàn toàn tương tự:

\(\frac{b}{\sqrt[4]{4}}< \sqrt[4]{b^3}; \frac{c}{\sqrt[4]{4}}< \sqrt[4]{c^3}\)

Cộng theo vế:

\(\Rightarrow \sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}> \frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)

Ta có đpcm.

3 tháng 2 2021

Ta có: \(\left(a^4-a^3+2\right)-\left(a+1\right)=\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Rightarrow a^4-a^3+2\ge a+1\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự:\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

\(\Rightarrow VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)\(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)(abc = 1)

Đẳng thức xảy ra khi a = b = c = 1

20 tháng 8 2016

3, \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\Rightarrow\frac{1}{\sqrt{\frac{a}{b+c}}}=\sqrt{\frac{a\left(b+c\right)}{a^2}}.\)

Áp dụng bất đẳng thức Cô si ta có : \(\sqrt{\frac{a\left(b+c\right)}{a^2}}\le\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right).\)

Chứng minh tương tự ta có : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right).\);  \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right).\)

Cộng vế với vế các bất đẳng thức cùng chiều ta được: 

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2.\)( đpcm )

dấu " = " xẩy ra khi a = b = c > 0