\(5\left(a+b\right)^2+ab\)chia hết cho 441 thì ab cũng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên

\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212

Ta lại có

\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)

\(=21\left(a+b\right)^2-\left(a-b\right)^2\)

Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21

Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)

Nên (a - b)2 chia hết cho 3 và 7

=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)

=> (a - b) chia hết cho 21

=> (a - b)2 chia hết cho 212 

Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212

=> 21(a + b)2 chia hết cho 212

=> (a + b) chia hết cho 21

Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212

=> 5(a + b)2 chia hết cho 212

=> ab chia hết cho 212 = 441

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

12 tháng 3

Nhận xét rằng với mọi số nguyên \(x\), định lý Fermat nhỏ cho ta: \(x^{2017}\equiv x\) (mod \(2017\))

nên với mỗi nghiệm \(x_i\) ta có: \(x_i^{2017}+ax_i^2+bx_i+c\equiv ax_i^2+\left(b+1\right)x_i+c\) (mod \(2017\))

\(\Rightarrow ax_i^2+\left(b+1\right)x_i+c\equiv0\) (mod \(2017\))

Xét \(x_1\) có: \(ax_1^2+\left(b+1\right)x_1+c\equiv0\) (mod \(2017\)) (1)

Xét \(x_2\) có: \(ax_2^2+\left(b+1\right)x_2+c\equiv0\) (mod \(2017\)) (2)

Từ (1), (2) \(\Rightarrow a\left(x_1^2-x_2^2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)

\(\Rightarrow a\left(x_1-x_2\right)\left(x_1+x_2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)

\(\Rightarrow\left(x_1-x_2\right)\left[a\left(x_1+x_2\right)+\left(b+1\right)\right]⋮2017\)

Mà \(\left(x_1-x_2\right)\left(x_2-x_3\right)\left(x_3-x_1\right)⋮̸2017\),  \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2⋮̸2017\\x_2-x_3⋮̸2017\\x_1-x_3⋮̸2017\end{matrix}\right.\)

\(\Rightarrow a\left(x_1+x_2\right)+\left(b+1\right)⋮2017\) (3) (do \(2017\) là số nguyên tố)

Tương tự với \(x_1\) và \(x_3\)\(\Rightarrow a\left(x_1+x_3\right)+\left(b+1\right)⋮2017\) (4)

Từ (3), (4) \(\Rightarrow a\left(x_2-x_3\right)⋮2017\)

Mà \(x_2-x_3⋮̸2017\Rightarrow a⋮2017\) (do \(2017\) là số nguyên tố) (5)

Từ (3), (5) \(\Rightarrow b+1⋮2017\) (6)

Từ (1), (5), (6) \(\Rightarrow c⋮2017\) (7)

Từ (5), (6), (7) \(\Rightarrow a+b+c+1⋮2017\) (đpcm)

 

 

7 tháng 4 2017

Xét các dạng của n trong phép chia cho 2 và 3

2k  , 2k+1

3p, 3p+1. 3p+2