K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

29 tháng 12 2015

1

tick nhoa!!!!!!!!!!!

22 tháng 2 2017

a) 62 = 2.31

ƯC(62) ={1, 2, 31, 61}

ƯC(A) = {1, 2, 4,...,2150) các phần tử của A ngoài 1, không có số lẻ nên không chứa 31

=> ƯCLN(A,62) = {2}

b) 2 không chia hết cho 4

22, 23, 24,...,2150 đều chia hết cho 2

=> A không chia hết cho 2

22 tháng 2 2017

minh k biet xin loi ban nha!

minh k biet xin loi ban nha!

minh k biet xin loi ban nha!

minh k biet xin loi ban nha!

30 tháng 11 2019

Đặt: \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

=> \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}\Rightarrow}\hept{\begin{cases}n^4+2n^2=n\left(n^3+2n\right)⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

=> \(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

=> \(n^2+1⋮d\)

=> \(n\left(n^2+1\right)⋮d\)

=> \(n^3+n⋮d\)

=> \(\left(n^3+2n\right)-\left(n^3+n\right)⋮d\)

=> \(n⋮d\)mà \(n^4+3n^2+1⋮d\)

=> \(1⋮d\)

=> d = 1

=> \(\left(a;b\right)=1\)