Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 6+ 32+ 33+ 34+.....+ 3100
2A= 3n
tìm số tự nhiên n
Ai biết làm bài này giúp mik nhé mik đang cần gấp
\(A=6+3^2+3^3+...+3^{100}\)
\(A=3^2+3^2+3^3+...+3^{100}\)
\(3A=\left(3^2+3^2+3^3+...+3^{100}\right).3\)
\(3A=3^3+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^3+3^3+3^4+...+3^{101}\right)-\)\(\left(3^2+3^2+3^3+...+3^{100}\right)\)
\(2A=\left(27+3^3+...+3^{101}\right)\)
TỚI ĐÂY MÌNH BÓ TAY !!!
\(S=1+2+2^2+...+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{101}\)
\(\Rightarrow S=2^{101}-1\)
\(\Rightarrow S=2^{101}-1< 2^{122}\)
S = 1 + 2 + 2^2 +......+ 2^100
2S = 2 x (1 + 2 + 2^2 +.......+ 2^100)
2S = 2 + 2^2 + 2^3 +....+ 2^100 + 2^101
2S - S = (2 + 2^2 + 2^3 +.....+2^100 + 2^101)-(1+2+2^2+.....+2^100)
S = 2^101 - 1
=> 2^101-1 < 2^122
a) A = 3 + 32 + ... + 3100
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
A = 3( 1 + 2 ) + 33( 1 + 2 ) + ... + 399( 1 + 2 )
A = 3( 1 + 33 + ... 399 ) ( 1 ).
b) Từ ( 1 ) ta có A chia hết cho 4 và 9.
c) 3A = 32 + 33 + ... + 3100 + 3101
3A - A = ( 32 + 33 + ... + 3100 + 3101 ) - ( 3 + 32 + ... + 3100 )
2A = 3101 - 3 \(\Rightarrow\)2A + 3 = 3101
\(\Rightarrow\)n = 101.
a) A= 3+32+...+3100
=> 3A = 32+33+...+3101
=> 3A-A= 32+33+...+3101 - ( 3+32+...+3100 )
=> 2A = 3101-3
=> A= \(\frac{3^{101}-3}{2}\)
b) Trong câu hỏi tương tự nhé
c) Theo câu a
A = \(\frac{3^{101}-3}{2}\)
=> 2A =3101-3
=> 2A+3=3101
=> n=101
\(A=3+3^2+3^3+3^4+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=\left[3^2+3^3+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)
\(2A=3^{101}-3\)
\(A=\frac{3^{101}-3}{2}\)
Ta lại có : \(2A+3=3^x\)
=> \(2\cdot\frac{3^{101}-3}{2}+3=3^x\)
=> \(3^{101}-3+3=3^x\)
=> 3101 = 3x
=> x = 101
Vậy x = 101
\(3A=3^2+3^3+...+3^{101}\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}=3^x\)
\(\Rightarrow x=101\)
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=\frac{\left(3^{101}-3\right)}{2}\)
Ta có:
\(A=3+3^2+3^3+........+3^{100}\Rightarrow3A=3^2+3^3+.......+3^{101}\Rightarrow3A-A=2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}=3n\Rightarrow n=3^{100}\)