Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)
\(=\frac{200-199}{199}+\frac{200-198}{198}+...+\frac{200-1}{1}\)
\(=\frac{200}{199}-\frac{199}{199}+\frac{200}{198}-\frac{198}{198}+...+\frac{200}{1}-\frac{1}{1}\)
\(=\left(\frac{200}{199}+\frac{200}{198}+...+\frac{200}{1}\right)-\left(\frac{199}{199}+\frac{198}{198}+...+\frac{1}{1}\right)\)
\(=200+200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)-199\)
\(=200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)+\frac{200}{200}\)
\(=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}=\frac{1}{200}\)
Ta có :
\(B=\frac{1}{199}+\frac{2}{198}+....+\frac{198}{2}+\frac{199}{1}\)
\(B=1+\frac{1}{199}+1+\frac{1}{198}+....+1+\frac{198}{2}\)
\(B=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(B=200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}=\frac{1}{200}\)
Vậy \(\frac{A}{B}=\frac{1}{200}\)
Hình như mik chưa tính nhưng vế sau là = 0 nên bnj ko cần tính vế trước đâu
( \(\frac{12}{199}\)+ \(\frac{23}{200}\)- \(\frac{34}{201}\)) x ( \(\frac{1}{2}\)- \(\frac{1}{3}\)- \(\frac{1}{6}\))
= ( \(\frac{12}{199}\)+ \(\frac{23}{200}\)- \(\frac{34}{201}\)) x ( \(\frac{3}{6}\)- \(\frac{2}{6}\)- \(\frac{1}{6}\))
=( \(\frac{12}{199}\) + \(\frac{23}{200}\) - \(\frac{34}{201}\)) x 0
= 0
Học tốt ^-^
vì\(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}=\frac{3}{6}-\frac{2}{6}-\frac{1}{6}=\frac{3-2-1}{6}=\frac{0}{6}=0\)
=> \(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)=\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot0=0\)
\(a.\frac{1}{2^{300}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{8^{100}}\)
\(\frac{1}{3^{200}}=\frac{1}{\left(3^2\right)^{100}}=\frac{1}{9^{100}}\)
\(\text{Vì }\frac{1}{8}>\frac{1}{9}\Rightarrow\frac{1}{\left(2^3\right)^{100}}>\frac{1}{\left(3^2\right)^{100}}\Rightarrow\frac{1}{2^{300}}>\frac{1}{3^{200}}\)
\(b.\frac{1}{5^{199}}:\text{Giữ nguyên}\)
\(\frac{1}{3^{200}}=\frac{1}{3^{199}\cdot3}\)
\(\frac{1}{5^{199}}< \frac{1}{3^{199}\cdot3}\Rightarrow\frac{1}{5^{199}}< \frac{1}{3^{200}}\)
2 bài dưới bn làm tương tự nhé
a) 7/13.7/15 - 5/12.21/39 + 49/91.8/15
= 7/13. 7/15 - 5/12. 7/13 + 7/13.8/15
= 7/13. ( 7/15 - 5/12 + 8/15)
= 7/13. ( 7/15 + 8/15 - 5/12)
= 7/13. ( 1 - 5/12)
= 7/13. 7/12
= 49/156
b) ( 12/199 + 23/100 - 34/201) . ( 1/2-1/3-1/6)
= ( 12/199 + 23/100 - 34/201).0
= 0
a) \(=\frac{7}{13}.\frac{7}{15}-\frac{5}{12}.\frac{7}{13}+\frac{7}{130}.\frac{8}{15}=\frac{7}{13}\left(\frac{7}{15}+\frac{8}{15}-\frac{5}{12}\right)=\frac{7}{13}\left(1-\frac{5}{12}\right)=\frac{7}{13}.\frac{7}{12}=\frac{48}{156}\)
b) \(=\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right).\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)=\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right).0=0\)
Tách tổng A thành 4 nhóm
A = ( 1 + \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\)) + ( \(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}\right)+\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{149}+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{199}+\frac{1}{200}\right)\)
A > \(\frac{1}{50}.50+\frac{1}{100}.50+\frac{1}{150}.50+\frac{1}{200}.50\)= \(\left(\frac{1}{50}+\frac{1}{100}+\frac{1}{150}+\frac{1}{200}\right).50=\frac{1}{24}.50=\frac{25}{12}\)
\(\Rightarrow\) A > \(\frac{25}{12}\)