Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài Làm:
1, Tìm ĐKXĐ:
a, Để \(\sqrt{\frac{x^2+3}{3-2x}}\) có nghĩa thì: \(\frac{x^2+3}{3-2x}\ge0\)
Vì \(x^2+3>0\forall x\) nên \(3-2x\ge0\)
\(\Leftrightarrow x\le\frac{3}{2}\)
Vậy ...
b, Để \(\sqrt{\frac{-2}{x^3}}\) có nghĩa thì: \(\frac{-2}{x^3}\ge0\)
Vì \(-2< 0\) nên \(x^3\le0\Leftrightarrow x\le0\)
Vậy ...
c, Để \(\sqrt{x\left(x-2\right)}\) có nghĩa thì: \(x\left(x-2\right)\ge0\)
\(TH1:\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)
\(TH2:\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\Leftrightarrow x\le0\)
\(\Leftrightarrow\) \(x\ge2\) hoặc \(x\le0\)
Vậy ...
Ta có \(B=\sqrt{x+3}+\sqrt{5-x}\Leftrightarrow B^2=x+3+5-x+2\sqrt{\left(x+3\right)\left(5-x\right)}=8+2\sqrt{\left(x+3\right)\left(5-x\right)}\) Ta có \(\sqrt{\left(x+3\right)\left(5-x\right)}\ge0\Leftrightarrow2\sqrt{\left(x+3\right)\left(5-x\right)}\ge0\Leftrightarrow8+2\sqrt{\left(x+3\right)\left(5-x\right)}\ge8\Leftrightarrow B^2\ge8\Leftrightarrow B\ge2\sqrt{2}\)Vậy \(2\sqrt{2}\le B\)(1)
Áp dụng bđt Bunhia copski ta có
\(B^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2=\left(\sqrt{x+3}.1+\sqrt{5-x}.1\right)^2\le\left[\left(\sqrt{x+3}\right)^2+\left(\sqrt{5-x}\right)^2\right]\left(1^2+1^2\right)=8.2=16\Leftrightarrow B^2\le16\Leftrightarrow B\le4\)(2)
Từ (1),(2)\(\Rightarrow2\sqrt{2}\le B\le4\)
Áp dụng bât đẳng thức Bunhiacoxki , ta có : \(A^2=\left(1.\sqrt{x+3}+1.\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x+3+5-x\right)\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}-3\le x\le5\\\sqrt{x+3}=\sqrt{5-x}\end{cases}\Leftrightarrow x=1}\)
mình cần gấp, ai giúp với
\(A^2=x+3+5-x+2\sqrt{\left(x+3\right)\left(5-x\right)}.\)
\(A^2=8+2\sqrt{-x^2+2x+15}=8+2\sqrt{-\left(x^2-2x+1\right)+16}\)
\(A^2=8+2\sqrt{-\left(x-1\right)^2+16}\)
\(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+16\le16\)
\(\Rightarrow\sqrt{-\left(x-1\right)^2+16}\le\sqrt{16}=4\Rightarrow2\sqrt{-\left(x-1\right)^2+16}\le8\)
\(\Rightarrow A^2=8+2\sqrt{-\left(x-1\right)+16}\le16\Rightarrow A\le4\)