\(\frac{a^2+9b^2}{a-3b}\ge2\sqrt{6}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

Áp dụng bất đẳng thức Cô - si, ta được: \(\frac{a^2+9b^2}{a-3b}=\frac{\left(a^2-6ab+9b^2\right)+6ab}{a-3b}=\frac{\left(a-3b\right)^2+6ab}{a-3b}\)\(=\left(a-3b\right)+\frac{6ab}{a-3b}\ge2\sqrt{\left(a-3b\right).\frac{6ab}{a-3b}}=2\sqrt{6ab}=2\sqrt{6}\)(đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

Ta có :\(\frac{a^2+9b^2}{a-3b}=\frac{a^2+9b^2-6ab+6ab}{a-3b}\)

\(=\frac{(a-3b)^2+6}{a-3b}\) (do $ab=1$)

\(=a-3b+\frac{6}{a-3b}\geq 2\sqrt{(a-3b).\frac{6}{a-3b}}=2\sqrt{6}\) (theo bđt Cauchy)

Do đó ta có đpcm

28 tháng 6 2020

ta có: \(\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}=\frac{7a+b}{2}\)

=> \(\sqrt{a\left(3a+b\right)}\le\frac{7a+b}{4}\)

\(\sqrt{4b\left(3b+a\right)}\le\frac{7b+a}{4}\)

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{\frac{7a+b}{4}+\frac{7b+a}{4}}=\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a = b 

28 tháng 6 2020

Sửa đề: CM: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)

Ta có \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\left(1\right)\)

Áp dụng bất đẳng thức Cô-si cho các só dương ta được

\(\hept{\begin{cases}\sqrt{4a\left(3a+b\right)}\le\frac{4a+\left(3a+b\right)}{2}=\frac{7a+b}{2}\left(2\right)\\\sqrt{4b\left(3b+a\right)}\le\frac{4b+\left(3b+a\right)}{2}=\frac{7b+a}{2}\left(3\right)\end{cases}}\)

Từ (2) và (3) \(\Rightarrow\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}\le4a+4b\left(4\right)\)

Từ (1) và (4) => \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{4a+4b}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a=b

15 tháng 10 2016

Câu trên đề sai

\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)

Vậy nó là số nguyên

15 tháng 10 2016

Lớn hơn hoặc bằng đấy

4 tháng 10 2017

thangbnsh@gmail.com helpme

4 tháng 10 2017

thangbnsh@gmail.comacelegona

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện