Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca
a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²
Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
a2+b2+c2<2(ab+bc+ac)
<=>a2+b2+c2-2ab-2ac-2bc<0
<=>a^2+b^2+c^2-2ab-2ac+2bc-4bc<0
<=>(a-b-c)2-4bc<0
Mà a,b,c là độ dài 3 cạnh của tam giác nên a-b-c<0=>(a-b-c)2<0(1)
bc>0=>4bc>0=>-4bc<0(2)
từ (1) và (2) =>(a-b-c)2-4bc<0
k cho mình nha
Theo BĐT tam giác:
(+) a+b > c
<=>(a+b).c > c2<=>ac+bc > c2 (1)
(+)a+c > b
<=>(a+c).b > b2<=>ab+bc > b2 (2)
(+)b+c > a
<=>(b+c).a > a2<=>ab+ac > a2 (3)
Cộng từng vế (1);(2);(3)
=>a2+b2+c2 < ac+bc+ab+bc+ab+ac=2ab+2bc+2ac=2(ab+bc+ca)
=>ĐPCM
\(a^3b^2-a^3c^2+b^3c^2-b^3a^2+c^3a^2-c^3b^2\)
\(=a^2b^2\left(a-b\right)-c^2\left(a^3-b^3\right)+c^3\left(a^2-b^2\right)\)
\(=a^2b^2\left(a-b\right)-c^2\left(a-b\right)\left(a^2+ab+b^2\right)+c^3\left(a+b\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2b^2-c^2a^2-c^2ab-c^2b^2+c^3a+c^3b\right)\)
\(=\left(a-b\right)\left[\left(a^2b^2-c^2b^2\right)-\left(c^2a^2-c^3a\right)-\left(c^2ab-c^3b\right)\right]\)
\(=\left(a-b\right)\left[b^2\left(a-c\right)\left(a+c\right)-c^2a\left(a-c\right)-c^2b\left(a-c\right)\right]\)
\(=\left(a-b\right)\left[\left(a-c\right)\left(b^2a+b^2c-c^2a-c^2b\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left[\left(b^2a-c^2a\right)+\left(b^2c-c^2b\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left[a\left(b-c\right)\left(b+c\right)+bc\left(b-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)
\(a< b< c\Leftrightarrow\left\{{}\begin{matrix}a-b< 0\\a-c< 0\\b-c< 0\end{matrix}\right.\)
ab+ac+bc hiển nhiên lớn hơn 0 suy ra tích nhỏ hơn 0 => đpcm