Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}=\frac{3a-b}{2a+a-b}+\frac{3b-a}{2b-\left(a-b\right)}=\frac{3a-b}{3a-b}+\frac{3b-a}{3b-a}=2\)
Ta có a - b = 7 => a = 7 + b
Thay a = 7+b vào C có :
\(C=\frac{3\left(7+b\right)-b}{2\left(7+b\right)+7}+\frac{3b-7-b}{2b-7}\)
\(C=\frac{21+3b-b}{14+2b+7}+\frac{2b-7}{2b-7}\)
\(C=\frac{21+2b}{21+2b}+1=1+1=2\)
Vậy \(C=2\)
Ta có:\(a-b=7\Leftrightarrow7=a-b\)
Thay \(7=a-b\)vào biểu thức,ta được:
\(\frac{3a-b}{2a+7}+\frac{3a-b}{2b-7}=\frac{3a-b}{2a+a-b}+\frac{3a-b}{2b-a+b}\)
\(=\frac{3a-b}{3a-b}+\frac{3b-a}{3b-a}\)
\(=1+1\)
\(=2\)
Vậy giá trị của biểu thức C=2
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a+b}{3a-5b}=\dfrac{2\cdot bk+b}{3\cdot bk-5b}=\dfrac{2k+1}{3k-5}\)
\(\dfrac{2c+d}{3c-5d}=\dfrac{2dk+d}{3dk-5d}=\dfrac{2k+1}{3k-5}\)
Do đó: \(\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\)
Vì a-b=7=>a= 7+b
Thay vào biểu thức ta có: 3(7+b)-b/2(7+b)+7= 21+3b-b/14+2b+7= 21+2b/21+2b = 1