\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2020

ko bt làm

16 tháng 11 2020

=11111111111111111111111111111

22222222222222222222222222222

333333333333

20 tháng 3 2017

 C=\(\frac{ab}{a^2+\left(b-c\right)\left(c+b\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}\)+\(\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)

Vì a+b+c=0 =>-a=b+c ; -c=a+b ; -b=a+c

=>C=\(\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)

=\(\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)

=\(\frac{b}{-2b}+\frac{c}{-2c}+\frac{a}{-2a}\)

=\(\frac{-3}{2}\)

20 tháng 3 2017

thanks

12 tháng 4 2019

Có a + b + c = 0

=> a + b = - c

=> (a + b)2 = c2

=> a2 + b2 + 2ab = c2

=> a2 + b2 - c2 = - 2ab

Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca

Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)

a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab

Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac

=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)

12 tháng 5 2018

Trong phần câu hỏi tương tự có nhé cậu !

12 tháng 5 2018

\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

ta có:

\(Q=\frac{ab}{\left(a^2-c^2\right)+b^2}+\frac{bc}{\left(b^2-a^2\right)+c^2}+\frac{ac}{\left(c^2-b^2\right)+a^2}\)

    \(=\frac{ab}{\left(a-c\right)\left(a+c\right)+b^2}+\frac{bc}{\left(b-a\right)\left(b+a\right)+c^2}+\frac{ac}{\left(c-b\right)\left(c+b\right)+a^2}\)

\(=\frac{ab}{-b\left(a-c\right)+\left(-b\right)^2}+\frac{bc}{-c\left(b-a\right)+\left(-c\right)^2}+\frac{ac}{-a\left(c-b\right)+\left(-a\right)^2}\)

\(=\frac{ab}{-b\left(a-c-b\right)}+\frac{bc}{-c\left(b-a-c\right)}+\frac{ac}{-a\left(c-b-a\right)}\)

\(=\frac{ab}{-\left(a-\left(c+b\right)\right)}+\frac{bc}{-\left(b-\left(a+c\right)\right)}+\frac{ac}{-\left(c-\left(b+a\right)\right)}=\frac{ab}{-\left(a--a\right)}+\frac{bc}{-\left(b--b\right)}+\frac{ac}{-\left(c--c\right)}\)

\(=\frac{ab}{-2a}+\frac{bc}{-2b}+\frac{ac}{-2c}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{b+c+a}{-2}=\frac{0}{-2}=0\)

vậy Q=0

13 tháng 11 2016

Ta có: a + b = c <=> a2 + b2 + 2ab = c2 <=> a2 + b2 - c2 = - 2ab

Tương tự: a2 + c2 - b2 = - 2ac

b2 + c2 - a2 = - 2bc

Thế vào ta được

\(\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{a^2+c^2-b^2}=-\frac{ab}{2ab}-\frac{bc}{2bc}-\frac{ac}{2ac}=-6\)

13 tháng 3 2017

=-6 ngo như bù

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0
5 tháng 6 2019

Ta có : \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow a^2+b^2+2ab=c^2\)

\(\Rightarrow c^2-a^2-b^2=2ab\)

Tương tự :

\(b^2-c^2-a^2=2ac\)

\(a^2-b^2-c^2=2ab\)

\(\Leftrightarrow\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Mà \(a+b+c=0\)\(\Rightarrow a^3+b^3+c^3=3abc\)( cái này rất dễ chứng minh nha , bạn có thể tham khảo trên mạng hoặc nhắn tin cho mình )

\(\Leftrightarrow\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

5 tháng 6 2019

#)Giải :

Ta có : \(a+b+c=0\Rightarrow a^2=\left(b+c\right)^2\)

\(\Rightarrow a^2-b^2-c^2=2ab\)

Tương tự, ta có :

\(\sum\)\(\frac{a^2}{a^2-b^2-c^2}=\)\(\sum\)\(\frac{a^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

5 tháng 12 2016

jkghffffffffffffffffffffffffffffffffffffffffffffffffffff

13 tháng 12 2016

jkghffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff giống bạn đó Nguyễn Thế An

15 tháng 1 2019

ta có: a + b + c = 0 => a+b = - c => a2 + 2ab + b2 = c2 => a2 + b2 - c2 = - 2ab

tương tự như trên, ta có: b2 + c2 - a2 = -2bc; c2 + a2 - b2 = -2ac

thay vào A, có:

\(A=\frac{1}{-2bc}-\frac{1}{2ca}-\frac{1}{2ab}\)

\(A=-\frac{1}{2}.\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=-\frac{1}{2}.\left(\frac{a+b+c}{abc}\right)=-\frac{1}{2}.\left(\frac{0}{abc}\right)=0\)

KL: A = 0 tại a + b + c = 0

23 tháng 11 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\Leftrightarrow\hept{\begin{cases}bc=-\left(ab+ac\right)\\ab=-\left(bc+ac\right)\\ac=-\left(bc+ab\right)\end{cases}}\)

Ta có: \(a^2+2bc=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự \(b^2+2ac=\left(b-a\right)\left(b-c\right);c^2+2ab=\left(c-a\right)\left(c-b\right)\)

\(\Leftrightarrow N=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)