K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

P < 0 => P là số âm 

a > 0 => a là số dương

b > c => dasu của b là + 

c là trừ

22 tháng 1 2016

b là dấu dương

c là dấu âm

chit cho mình vui vẻ vào năm mới

22 tháng 1 2016

khi a.b<0 thì 

=> TH1 a<0, b>0 a<b 

TH2 a>0, b<0, a>b 

mà ta có a<b nên a<0, b>0

vậy a mang dấu âm, b mang dấu dương

22 tháng 1 2016

nếu a.b < 0 thì a;b phải trái dấu

mà số nguyên dươn thì luôn lớn hơn số nguyên âm

=> a mang dấu âm; b mang dấu dương

24 tháng 2 2020

b < c => b, c không thể = 0

P >0, a < 0 => b.c < 0

=> b, c trái dấu (b âm thì c dương, b dương thì c âm)

13 tháng 1 2017

vì a<0;A>0 và b<c

=> a và b là số âm, còn c là số dương.

mà A>0 => c>0 vì A=a.b.c

vì b là số âm => b<0.

(do đó: b.c<0.)

vậy b<0 và c>0.

chúc học giỏi, k nha...

7 tháng 2 2020

    Có: a<0, A>0, b<c.

  => a và b là số nguyên âm, c là số nguyên dương.

        mà A>0.

  => c>0(vì A=a.b.c).

        mà b là số nguyên âm.

  =>b<0.

    Vậy b<, c>0.

16 tháng 8 2020

TA CÓ:   \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

TA LUÔN CÓ:   \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

TỪ (1) VÀ (2) =>   \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\) 

VẬY TA CÓ ĐPCM.

16 tháng 8 2020

Cho  \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)

                             \(\frac{c}{a+b+c}< \frac{c}{c+a}\)

Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

                                       1 < B

CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)

Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2