K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Bạn xem lại đề nhé!

Mình chứng minh lỗi sai của bạn:

a, b, c là 3 cạnh của 1 tam giác vuông với c là cạnh huyền 

=> \(a^2+b^2=c^2\Leftrightarrow\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1\)

Mà \(a< c;b< c\Rightarrow\frac{a}{c}< 1;\frac{b}{c}< 1\)

=> \(\left(\frac{a}{c}\right)^{2020}< \left(\frac{a}{c}\right)^2;\left(\frac{b}{c}\right)^{2020}< \left(\frac{b}{c}\right)^2\)

=> \(\left(\frac{a}{c}\right)^{2020}+\left(\frac{b}{c}\right)^{2020}< \left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1\)

=> \(a^{2020}+b^{2020}< c^{2020}\)

Bạn vẫn nên xem lại đề nha!

8 tháng 8 2023

bạn Tham khảo bài bạn này 

11 tháng 6 2020

Bài cm vô lí k thuyết phục :v

28 tháng 6 2020

https://olm.vn/hoi-dap/detail/257556475590.html

12 tháng 6 2015

: Nhầm đề bài rồi a^2 + b^2 + c^ 2 > 2(ab+bc+ac)

12 tháng 6 2015

\(ab+bc=b\left(a+c\right)>b.b=b^2\)

\(bc+ca=c\left(a+b\right)>c.c=c^2\)

\(ca+ab=a\left(b+c\right)>a.a=a^2\)

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

21 tháng 4 2017

Một tuần nữa mới thi á? Đâu thi rồi. Có muốn biết đề ko?

17 tháng 2 2020

a2 + b2 = c2

<=> (a2 + b2)n = c2n

<=> a2n + P + b2n = c2n

Mà P > 0 => a2n + b2n =< c2n 

Dấu bằng xảy ra <=> n = 1 (làm đại ạ)