K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Bạn xem lại đề nhé!

Mình chứng minh lỗi sai của bạn:

a, b, c là 3 cạnh của 1 tam giác vuông với c là cạnh huyền 

=> \(a^2+b^2=c^2\Leftrightarrow\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1\)

Mà \(a< c;b< c\Rightarrow\frac{a}{c}< 1;\frac{b}{c}< 1\)

=> \(\left(\frac{a}{c}\right)^{2020}< \left(\frac{a}{c}\right)^2;\left(\frac{b}{c}\right)^{2020}< \left(\frac{b}{c}\right)^2\)

=> \(\left(\frac{a}{c}\right)^{2020}+\left(\frac{b}{c}\right)^{2020}< \left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1\)

=> \(a^{2020}+b^{2020}< c^{2020}\)

Bạn vẫn nên xem lại đề nha!

8 tháng 8 2023

bạn Tham khảo bài bạn này 

11 tháng 6 2020

Bài cm vô lí k thuyết phục :v

28 tháng 6 2020

https://olm.vn/hoi-dap/detail/257556475590.html

10 tháng 7 2016

bài này ta sẽ phải vận dụng linh hoạt hằng đẳng thức hiệu 2 bình phương là chính: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(4b^2c^2-\left(b^2+c^2-a^2\right)^2=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right).\left(2bc+b^2+c^2-a^2\right)\)

\(=\left(a^2+2bc-b^2-c^2\right)\left(2bc+b^2+c^2-a^2\right)=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)\)

Vì a,b,c là độ dài 3 cạnh của tam giác nên theo bất đẳng thức tam giác: 

+a+c > b => a+c-b > 0

+b+c > a=>b+c-a > 0

+a+b+c và b+c+a hiển hiên đều lớn hơn 0

Nên \(\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)

\(=>4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\left(đpcm\right)\)

4 tháng 2 2020

Giả sử c không là độ dài cạnh nhỏ nhất, không mất tính tổng quát, giả sử : \(c\ge a\)

\(\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)

\(\Rightarrow b^2>4c^2=\left(2c\right)^2\)(1)

Vì b và c là số dương (độ dài các cạnh) nên \(\left(1\right)\Leftrightarrow b>2c\ge c+a\)(trái với bđt tam giác)

Vậy điều giả sử là sai nên c là độ dài cạnh nhỏ nhất (đpcm)

25 tháng 2 2020

Vì a, b,c là độ dài ba cạnh của một tam giác

=> \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}}\)(bđt)

=>\(\frac{a}{b}\)\(< \frac{a+m}{b+m}\)\(\left(\frac{a}{b}< 1;a,b,m>0\right)\)

=> \(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)

làm tương tự 2 cái còn lại

cộng vế đẳng thức trên ta đc :

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \)\(\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=>\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

=> đpcm

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)

2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.

3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.

4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^0\). Tính độ dài AD.

5. Tìm các số a,b sao cho 2007ab là bình phương của số tự nhiên.

6. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AH và BH. Chứng minh rằng \(CM\perp AN\)

7. Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)

8. Cho tam giác ABC, H là trực tâm, O là tâm đường tròn đi qua ba đỉnh của tam giác. Chứng minh rằng khoảng cách từ O đến một cạnh của tam giác bằng một nửa khoảng cách từ H đến đỉnh đối diện.

9. Tìm x,y,z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

10. Độ dài ba cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào?

2
11 tháng 4 2018

Bài 7 : 

( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt ) 

Ta có : 

\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\)

Vậy \(A>10\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.