Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a-\(\dfrac{1}{a}-2=a^2-2a+1=\left(a-1\right)^2\ge0\)
\(\Rightarrow a-\dfrac{1}{a}\ge2\)
Q(x)=2x2+\(\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)
=2(\(x^2+\dfrac{1}{x^2}\)) +3(\(y^2+\dfrac{1}{y^2}\))+(\(\dfrac{4}{x^2}+\dfrac{5}{y^2}\))
\(\ge2.2+3.2+9=19\)
Dấu = xảy ra khi x=y=1
Đặt biểu thức cần tìm GTNN là A .
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a+\dfrac{1}{4a}\text{≥}2\sqrt{a.\dfrac{1}{4a}}=1\)
\(b+\dfrac{1}{4b}\text{≥}2\sqrt{b.\dfrac{1}{4b}}=1\)
\(c+\dfrac{1}{4c}\text{≥}2\sqrt{c.\dfrac{1}{4c}}=1\) ≥
⇒ \(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}3\)
⇔ \(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}3+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ⇔ \(a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{\left(1+1+1\right)^2}{a+b+c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}=\dfrac{15}{2}\)⇒ \(A_{Min}=\dfrac{15}{2}."="\text{⇔}a=b=c=\dfrac{1}{2}\)
1/(a+b) + 1/(b+c) + 1/(c+a) = 4/(a+b+c)
=> [1/(a+b) + 1/(b+c) + 1/(c+a)](a+b+c) = 4
=> 3 + c/(a+b) +a/(b+c) + b/(c+a) = 4
=> [3 + c/(a+b) + a/(b+c) + b/(c+a)](a+b+c) = 4(a+b+c)
=> 3(a+b+c) + c + c2(a+b) + a + a2(b+c) + b + b2(c+a) = 4(a+b+c)
=> a2(b+c) + b2(c+a) + c2(a+b) = 0
Ko cần cảm ơn, mik giúp bạn chỉ vì mik đang sắp rơi vào danh sách học sinh dốt của hoc24h ^^
Với mọi a , b , c \(\in\)R ta luôn có :
\(a^2\)+ \(b^2\)+ \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)
Ta cần chứng minh ( 1 ) là bất đẳng thức đúng
\(\Leftrightarrow\)\(a^2\)+ \(b^2\)+ \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0
\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )
Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng
Nên bất đẳng thức ( 1 ) được chứng minh
Xảy ra khi và chỉ khi a + b = c
Mà \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)( gt )
Mà \(\frac{5}{3}\)= \(1\frac{2}{3}\)< 2 ( 3 )
Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :
2bc + 2ca - 2ab < hoặc = \(a^2\)+ \(b^2\)+ \(c^2\)< 2
\(\Rightarrow\)2bc + 2ca - 2ab < 2
Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc
\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)
\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy với a ; b ; c là các số dương thỏa mãn điều kiện : \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)thì ta luôn chứng minh được :
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
á mk xl nhá mk ko đọc kĩ đề mk làm nhầm rùi bài mk làm là tìm GTNN nhá bạn ( mất công quá)
ta có A= a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
= \(\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c}{4}+\dfrac{3c}{4}+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
=\(\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\)
vì a,b,c >0 ===> \(\dfrac{3a}{4}>0,\dfrac{3}{a}>0,\dfrac{b}{2}>0,\dfrac{9}{2b}>0,\dfrac{c}{4}>0,\dfrac{4}{c}>0\)
áp dụng BĐT côsi cho các cặp số dương ta đc:
\(\dfrac{3a}{4}+\dfrac{3}{a}>=2.\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}=3\)
\(\dfrac{b}{2}+\dfrac{9}{2b}>=3\)(làm như trên nhá)
\(\dfrac{c}{4}+\dfrac{4}{c}>=2\)
===> \(\dfrac{3a}{4}+\dfrac{3}{a}+\dfrac{b}{2}+\dfrac{9}{2b}+\dfrac{c}{4}+\dfrac{4}{c}>=8\left(1\right)\)
có: \(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}=\dfrac{a+2b+3c}{4}\)
mà a+2b+3c >= 20
===> \(\dfrac{a+2b+3c}{4}>=\dfrac{20}{4}=5\)
===> \(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}>=5\left(2\right)\)
từ (1) và(2)===> a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}>=13\)
===> A >= 13
Dấu ''='' xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Vậy Min A=13 <=>\(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)