Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0
Ta có \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}\)
= \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
= \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\frac{x+y+z}{xyz}\)
= \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)( đpcm )
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
2) 1/x - 1/y - 1/z = 1
=> (1/x - 1/y - 1/z)^2 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2/xy - 2/xz + 2/yz = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(1/xy + 1/xz - 1/yz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(z+y-x/xyz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.0 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 = 1 (đpcm)
đặt x=a-b;y=b-c;z=c-a
ta có x+y+z=0
nên ta có ĐPCM
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
<=> \(2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)
<=> \(\frac{z}{xyz}+\frac{y}{xyz}+\frac{x}{xyz}=0\)
<=> \(\frac{x+y+z}{xyz}=0\) (luôn đúng )