Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
\(1.\sqrt{a^2+ab+b^2}\le\frac{1+a^2+ab+b^2}{2}\)
\(\Rightarrow VT\ge\frac{1}{\frac{1+a^2+ab+b^2}{2}}+\)\(\frac{1}{\frac{1+b^2+cb+c^2}{2}}+\)\(\frac{1}{\frac{1+c^2+ac+a^2}{2}}\)\(\ge\frac{\left(1+1+1\right)^2}{\frac{1+a^2+ab+b^2}{2}+\frac{1+b^2+bc+c^2}{2}+\frac{1+c^2+ca+a^2}{2}}=\frac{9}{a^2+b^2+c^2+\frac{\left(ab+bc+ca\right)+3}{2}}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=VP\)
vì 3 </ 3 ( ab+bc+ca)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x, y, z > 0; x + y + z = 1. Quy về: \(\sqrt{\frac{1}{x}+\frac{1}{yz}}+\sqrt{\frac{1}{y}+\frac{1}{zx}}+\sqrt{\frac{1}{z}+\frac{1}{xy}}\ge\sqrt{\frac{1}{xyz}}+\sqrt{\frac{1}{x}}+\sqrt{\frac{1}{y}}+\sqrt{\frac{1}{z}}\)
\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\frac{x}{\sqrt{x+yz}+\sqrt{yz}}+\frac{y}{\sqrt{y+zx}+\sqrt{zx}}+\frac{z}{\sqrt{z+xy}+\sqrt{xy}}\ge1\) (chuyển vế qua nhóm lại rồi liên hợp)
\(\Leftrightarrow\Sigma_{cyc}\frac{x}{\sqrt{x\left(x+y+z\right)+yz}+\sqrt{yz}}\ge1\Leftrightarrow\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{yz}}\ge1\)
BĐT này đúng! Thật vậy:
\(VT\ge\Sigma_{cyc}\frac{x}{\frac{\left(x+y\right)+\left(z+z\right)}{2}+\frac{\left(y+z\right)}{2}}=\Sigma_{cyc}\frac{x}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Ta có đpcm. Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\Leftrightarrow a=b=c=3\)
đề bài
cm
1/a+2 + 1/b+2 +1/c+2 <=1
bn p viết đề chứ???
##thiêndi###
Ta có: \(\left(a^4-a^3+2\right)-\left(a+1\right)=\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Rightarrow a^4-a^3+2\ge a+1\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\)
\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)
Tương tự:\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\); \(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)
\(\Rightarrow VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)\(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)(abc = 1)
Đẳng thức xảy ra khi a = b = c = 1
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Đặt vế trái là P và \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=4\)
Ta cần chứng minh: \(P=\frac{1}{xy+2yz+zx}+\frac{1}{xy+yz+2zx}+\frac{1}{2xy+yz+zx}\le\frac{1}{xyz}\)
\(P=\frac{1}{xy+yz+yz+zx}+\frac{1}{xy+yz+zx+zx}+\frac{1}{xy+xy+yz+zx}\)
\(P\le\frac{1}{16}\left(\frac{1}{xy}+\frac{2}{yz}+\frac{1}{zx}+\frac{1}{xy}+\frac{1}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(P\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{4}\left(\frac{x+y+z}{xyz}\right)=\frac{1}{4}.\frac{4}{xyz}=\frac{1}{xyz}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\frac{4}{3}\) hay \(a=b=c=\frac{16}{9}\)
Ta có
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
Tương tự, ta có
\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)
Cộng vế theo vế của 3 bđt ta được đpcm
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)(1)
Áp dụng BĐT quen thuộc \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) :
\(\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\)(2)
Từ (1) và (2) ta có đpcm.
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)