Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=32+3334+...+3100+3101
\(\Rightarrow\)3A-A=(32+33+34+...+3100+3101)-(3+32+33+34+...+3100)
\(\Rightarrow\)2A=3100-3\(\Rightarrow\)2A+3=3101
\(\Rightarrow\)n=101
\(A=3+3^2+...+3^{99}\)
\(\Rightarrow3A=3.\left(3+3^2+...+3^{99}\right)\)
\(\Rightarrow3A=3^2+3^3+...+3^{100}\)
\(\Rightarrow3A-A=3^2+3^3+...+3^{100}-3-3^2-...-3^{99}\)
\(\Rightarrow2A=3^{100}-3\)
Thay 2A = 3100 - 3 vào 2A + 3 = 3n, ta có:
\(3^{100}-3+3=3^n\)
\(\Rightarrow3^{100}=3^n\Rightarrow n=100\)
Ta có \(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=3^{101}-3\)
\(2A=3^{101}-3\)
Ta có \(2A+3=3^n\)
hay \(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
\(n=101\)
A=3+32+33+.....+3100
3a=3.(3+32+33+....+3100)
3A=32+33+34+....+3101
3A-A=(32+33+34+....+3101)-(3+32+33+.....+3100)
2A=3101-3
2A+3=3101-3+3
2A+3=3101
3n=3101
=>n\(\in\)(101)
Chúc bn học tốt
Bài 1:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\Rightarrow2A=2+\frac{3}{2^2}+\frac{4}{2^3}+....+\frac{100}{2^{99}}\)
\(\Rightarrow2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)
\(\Rightarrow A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(\Rightarrow A=1+\frac{3}{2^2}+\left(\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)
Bài 2:
Giải:
Ta có: \(2n-3⋮n+1\)
\(\Rightarrow\left(2n+2\right)-5⋮n+1\)
\(\Rightarrow2\left(n+1\right)-5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)
Vậy ...
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
A = 3 + 32 + 33 + ... + 3100
3A = 3 ( 3 + 32 + 33 + ... + 3100)
= 32 + 33 + ... + 3101
3A - A = ( 32 + 33 + ... + 3100) - 3 + 32 + 33 + ... + 3100
2A = 3101 - A
\(\Rightarrow\) 2A + 3 = 3101 - 3 + 3 = 3101
mà 2A + 3 = 3n \(\Rightarrow\)3n = 3 101\(\Rightarrow\)n = 101
(3.x)^2 : 3^3=243
9.x^2 : 27=243
9.x^2=243.27
9.x^2=6561
x^2=6561:9
x^2=729
X=27
Câu 1: Dân số thế giới tăng nhanh trong khoảng thời gian nào?
a. Trước Công nguyên b. Từ Công Nguyên- thế kỉ XI
c. Từ thế kỉ XIX- thế kỉ XX d. Từ thế kỉ XIX- nay
Chọn C
Câu 2: Những năm 50 của thế kỉ XX bùng nổ dân số diễn ra ở
a. Châu Âu, Á, Đại dương b. Châu Á,Phi và Mĩ La Tinh
c. Châu Mĩ, Đại dương, Phi. d. Châu Mĩ La Tinh, Á, Âu
Chọn B
Đây là bài toán cấp số nhân: với q=3
Ta có:
A = 3+3^2+3^3+3^4+...+3^100
3A = 3^2+3^3+3^4+...+3^100+3^101
A-3A = 3-3^101
=>2A = 3^101-3
=>2A+3= 3^101=3^n
=>n= 101
Giờ đã đi làm, đã có con, giải lại bài toán cấp nhỏ vui ngê, làm nhớ lại thời còn đi học. Cố lên nha các cháu ^^