K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

Tinh 2A, roi lay 2A-A se chung to dc

26 tháng 4 2017

a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

b) Ta thấy : 21 = 3 .7        ( 3 ; 7 ) = 1

để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7

Ta có :

B = 21 + 22 + 23 + 24 + ... + 230

B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )

B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )

B = 2 . 3 + 23 . 3 + ... + 229 . 3

B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )

Lại có : B = 21 + 22 + 23 + 24 + ... + 230 

B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )

B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )

B = 2 . 7 + 24 . 7 + ... + 228 . 7

B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(⋮\)21

4 tháng 3 2018

oh my goh

30 tháng 3 2017

giup voi,làm ơn

9 tháng 8 2016

Có 1/100^2 x 99 <1 => B<1

9 tháng 8 2016

B = 1/22 + 1/32 + 1/42 + ... + 1/1002

B < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100

B < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

B < 1 - 1/100 < 1

20 tháng 3 2016

nhanh giúp mình

NV
13 tháng 1 2024

Với \(n>2\) ta có: \(\dfrac{n+\left(n+1\right)}{n^2.\left(n+1\right)^2}=\dfrac{1}{n\left(n+1\right)}\left[\dfrac{n}{n\left(n+1\right)}+\dfrac{n+1}{n\left(n+1\right)}\right]=\dfrac{1}{n\left(n+1\right)}\left(\dfrac{1}{n}+\dfrac{1}{n+1}\right)< \dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}< 1\) (đpcm)

13 tháng 1 2024

a=23

18 tháng 4 2018

Chứng tỏ\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.........+\frac{1}{100^2}\) <\(\frac{1}{2}\) 

Giờ tớ đặt cụm cần chứng minh là A

Ta có:

\(\frac{1}{3^2}< \frac{1}{2.3}\) 

\(\frac{1}{4^2}< \frac{1}{3.4}\) 

\(\frac{1}{5^2}< \frac{1}{4.5}\) 

........................

\(\frac{1}{100^2}< \frac{1}{99.100}\) 

=>\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+..........+\frac{1}{100^2}\) <\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.........+\frac{1}{99.100}\) 

=> A < \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+.......+\frac{1}{99}-\frac{1}{100}\) 

=> A <\(\frac{1}{2}-\frac{1}{100}\)

=> A<\(\frac{50}{100}-\frac{1}{100}\)

=> A<\(\frac{49}{100}\) <\(\frac{50}{100}\) =\(\frac{1}{2}\) 

=> A<\(\frac{1}{2}\)