K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

\(A=1.2+2.3+...+18.19\)

\(3A=1.2\left(3-0\right)+2.3\left(4-1\right)+...+18.19\left(20-17\right)\)

\(3A=1.2.3-0.1.2+2.3.4-1.2.3+...+18.19.20-17.18.19\)

\(3A=18.19.20=6840\)

\(\Rightarrow A=\dfrac{6840}{3}=2280\)

3 tháng 3 2017

=2919

28 tháng 12 2016

dạng tổng quát của mỗi phân số là 1/n(n+1) = 1/n -1/n+1

áp dụng vào làm với các phân số trong biểu thức cuối cùng còn 1-1/10=19/20

6 tháng 12 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(A=1-\frac{1}{20}\)

\(A=\frac{19}{20}\)

6 tháng 12 2017

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(=1-\frac{1}{20}\)

\(=\frac{19}{20}\)

17 tháng 8 2015

A= 1.2+2.3+3.4.....+99.100

=>3A=1.2.3+2.3.3+3.3.4+....+99.100.3

=1.2(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0

=999900

=>A=999900:3=333300

 

23 tháng 1 2017

A = 1.2 + 2.3 + 3.4 + .. + 99.100

<=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +...+ 99.100.3

            = 1.2.3 + 2.3.(4-1) + 3.4.( 5 -2) +...+ 99.100.(101-98)

            = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 + ..- 98.99.100 + 99.100.101

            = 999900

<=> A = 999900 : 3 = 333300

A=1.2+2.3+3.4+...+99.100

3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3A=1.2.3+2.3.4+3.4.5+...+98.99.100+99.100.101 - 0.1.2-1.2.3-2.3.4-3.4.5-...-98.99.100

3A=99.100.101-0.1.2

3A=999900-0

3A=999900

A=999900:3

A=333300

1 tháng 4 2018

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

5 tháng 3 2017

A = 1.2 + 2.3 + 3.4 + ...... + 100.101

3A = 1.2.3 + 2.3.3 + 3.4.3 + ...... + 100.101.3

3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ..... + 100.101.(102 - 99)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...... + 100.101.102 - 99.100.101

3A = 100.101.102

A = 100.101.34

A = 343400

11 tháng 3 2017

số số hạng : (99,100 -1.2) : 1.1 +1=90 số 

Tổng: (99.100 +1.2) x 90 : 2= 4513 ,5

11 tháng 3 2017

\(A=1.2+2.3+3.4+....+99.100\\ 3.A=1.2.3+2.3.3+....+99.100.3\)

\(3.A=1.2.3+2.3.\left(4-1\right)+....+99.100\left(101-98\right)\\ 3.A=1.2.3+.....+99.100.101-98.99.100\)

\(3.A=99.100.101\\ A=33.100.101=333300\)

22 tháng 5 2021

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

22 tháng 5 2021

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)