K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

\(A=1+2+2^2+...+2^{2009}\) 

\(2\text{A}=2+2^2+2^3+...+2^{2010}\)

\(2\text{A}-A=\left(2+2^2+2^3+...+2^{2010}\right)-\left(1+2+2^2+...+2^{2009}\right)\)

\(A=2^{2010}-1\)

Biết B = 2010-1?

17 tháng 10 2016

ĐỀ MÌNH LÀM LÀ 

B=\(2^{2010}-1\)

\(A=1+2+2^2+....+2^{2009}.\)

\(2A=2.\left(1+2+2^2+...+2^{2009}\right)\)

\(2A=2.1+2.2+2.2^2+...+2.2^{2009}\)

\(2A=2+4+2.2^2+...+2.2^{2009}\)

\(2A-A=\left(2+4+8+...+2^{2010}\right)-\left(1+2^1+2^2+...2^{2009}\right)\)

\(1A=2^{2010}-1\)

\(\Rightarrow A=B\)

17 tháng 4 2019

Đầu tiên chúng ta sẽ so sánh như sau

5^2010 và 5^2009

vì 2010>2009 nên 5^2010>5^200 (1)

1/5^2011+1 và 1/5^2010+1

vì 2011+1=2012

   2010+1=2011

mà 2012>2011 nên 1/5^2011+1>1/5^2010+1 (2)

Từ 1 và 2 ta có thể suy ra A>B

Vậy A>B

2 tháng 6 2020

ta có 2010 >2009 suy ra 5^2010 >5^2009 suy ra 5^2010 + 1>5^2009 +1                                               (1)

         2011>2010 suy ra 5^2011 >5^2010 suy ra 1/5^2011<1/5^2010 suy ra 1/5^2011 +1 <1/5^2010 + 1  (2)

từ (1) và (2) => A=B

19 tháng 12 2019

2x + 1 . 22009 = 22010

2x + 1 + 2009 = 22010

2x + 2010 = 22010

vậy x + 2010 = 2010

hay x = 0

19 tháng 12 2019

  2x + 1 . 22009   = 22010

2x                                 =     2 2010   :  2 2009

2x                           =     21

1 tháng 4 2022

3 nhân 2/3 bao nhiêu

15 tháng 1

ko bít thì đừng lên tiếng nha

20 tháng 11 2015

(3+ 32 +33 ) + (3+ 35 +36 ) + ... + (32008 + 32009 + 32010 )

= 3 ( 1+ 3 + 9 ) + 34 ( 1+ 3 +9 ) + ... + 32008 ( 1 + 3 +9 )

= 13 ( 3 + 34 + ... + 32008 )    chia hết cho 13

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé.