\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Sr chụy nha, em chưa học tới ~ :]]]

7 tháng 10 2017

bdt tương đương với  \(a^2+b^2+c^2+d^2+2ac+2bd\le a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)

\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+d^2\right)}\ge ac+bd\)

neu ac+bd \(\le0\) thi bdt can duoc cm 

neu ac+bd \(\ge0\) thi \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)

                \(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

 \(\Leftrightarrow b^2c^2+a^2d^2-2abcd\ge0\Leftrightarrow\left(bc-ad\right)^2\ge0\left(dpcm\right)\)

31 tháng 7 2017

1. Câu hỏi của Trần Huỳnh Thanh Long - Toán lớp 9 - Học toán với OnlineMath

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

21 tháng 4 2017

Ta có: \(\hept{\begin{cases}a^2+b^2+1=2\left(a+b\right)\\c^2+d^2+36=12\left(c+d\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2+\left(b-1\right)^2=1\\\left(c-6\right)^2+\left(d-6\right)^2=36\end{cases}}\)

\(\Rightarrow\) Đường tròn tâm \(\hept{\begin{cases}I\left(1;1\right)\\R=1\end{cases}}\), đương tròn tâm \(\hept{\begin{cases}I'\left(6;6\right)\\R'=6\end{cases}}\)

Gọi \(\hept{\begin{cases}A\left(a;b\right)\in\left(I\right)\\B\left(c;d\right)\in\left(I'\right)\end{cases}}\)

\(\Rightarrow AB=\sqrt{\left(a-c\right)^2+\left(b-d\right)^2}\)

Vì \(II'=\sqrt{25+25}=5\sqrt{2}>6+1=7=R+R'\)

Kẽ II' cắt đường tròn (I) và (I') tại M, N, P, Q.

Ta có: \(NP\le AB\le MQ\)

\(\Leftrightarrow II'-\left(R+R'\right)\le AB\le II'+\left(R+R'\right)\)

\(\Leftrightarrow5\sqrt{2}-7\le AB\le5\sqrt{2}+7\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)^3\le AB\le\left(\sqrt{2}+1\right)^3\)

\(\Rightarrow\left(\sqrt{2}-1\right)^6\le\left(a-c\right)^2+\left(b-d\right)^2\le\left(\sqrt{2}+1\right)^6\)

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

26 tháng 3 2017

Dùng BĐT Bunhiacopski:

Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

\(\left(a+c\right)^2+\left(b+d\right)^2\)

\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)

\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)

\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)

26 tháng 3 2017

Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn

16 tháng 3 2017

có thiếu ĐK nào k bạn ?

áp dụng BĐT cauchy :

\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)

việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))

dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)

19 tháng 12 2021

mk lớp 7

19 tháng 12 2021

Dấu '' = '' không xảy ra

Áp dụng BĐT AM-GM:

Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)

\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)

Ta có đpcm.