\(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)

CMR:...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
AH
Akai Haruma
Giáo viên
17 tháng 10 2018

Lời giải:

Đặt \((\sqrt{a}; \sqrt{b}; \sqrt{c})=(x,y,z)\)

Khi đó điều kiện của bài toán trở thành:

\(x^2+y^2+z^2=x+y+z=2\Rightarrow xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{2^2-2}{2}=1\)

Ta có:

\(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{x}{x^2+xy+yz+xz}+\frac{y}{y^2+xy+yz+xz}+\frac{z}{z^2+xy+yz+xz}\)

\(=\frac{x}{x(x+y)+z(x+y)}+\frac{y}{y(y+x)+z(y+x)}+\frac{z}{z(z+y)+x(y+z)}\)

\(=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\)

\(=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{(x+y)(y+z)(x+z)}(*)\)

Và:

\(\frac{2}{\sqrt{(a+1)(b+1)(c+1)}}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\)

\(=\frac{2}{\sqrt{(x^2+xy+yz+xz)(y^2+xy+yz+xz)(z^2+xy+yz+xz)}}=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}\)

\(=\frac{2}{\sqrt{(x+y)^2(y+z)^2(z+x)^2}}=\frac{2}{(x+y)(y+z)(x+z)}(**)\)

Từ \((*);(**)\Rightarrow \) đpcm.

5 tháng 8 2017

từ giả thiết ,ta có:\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1\)---> thay 1= vào ...

5 tháng 8 2017

bn làm tiếp đi t chưa hiểu

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

16 tháng 10 2022

b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)

\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)

c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)

\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)

\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)

d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)

27 tháng 10 2022

Câu 2: 

a: \(=2\left(\sqrt{4+\sqrt{5}-1}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\cdot\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=8\)

b: \(=\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{a-1}\cdot\left(\dfrac{a+1-2}{a+1}\right)^2\)

\(=\dfrac{2\left(a+1\right)}{a-1}\cdot\dfrac{\left(a-1\right)^2}{\left(a+1\right)^2}=\dfrac{2\left(a-1\right)}{a+1}\)