Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a và 1 là 2 số dương \(\Rightarrow a+1\ge2\sqrt{a}\) (bđt AM - GM)
Vì b và 1 là 2 số dương \(\Rightarrow b+1\ge2\sqrt{b}\)(bđt AM - GM)
Vì c và 1 là 2 số dương \(\Rightarrow c+1\ge2\sqrt{c}\)(bđt AM - GM)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\) (đpcm)
AM-GM 1 dòng thôi bạn :))
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
Dấu "=" khi a=b=c=1
Áp dụng BĐT AM - GM cho các số không âm , ta có :
\(\left\{{}\begin{matrix}a+1\ge2\sqrt{a}\\b+1\ge2\sqrt{b}\\c+1\ge2\sqrt{c}\end{matrix}\right.\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2.2.2.\sqrt{abc}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\left(đpcm\right)\)
Áp dụng bất đẳng thức Cauchy cho từng cặp số không âm (với \(a,b,c>0\)), ta có:
\(a^2+1\ge2a\) \(\left(1\right)\)
\(b^2+1\ge2b\) \(\left(2\right)\)
\(c^2+1\ge2c\) \(\left(3\right)\)
Nhân từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc=8\) (do \(abc=1\))
Xảy ra đẳng thức trên khi và chỉ khi \(a=b=c=1\)
Ta có:\(\left(a-1\right)^2\ge0\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a^2+2a+1\right)-4a\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)
TT\(\Rightarrow\left(b+1\right)^2\ge4b\)
\(\left(c+1\right)^2\ge4b\)
Nhân vế theo vế ta được \(\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2\ge64abc=64\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)(đpcm)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ac+bc+ab+a+b+c+1\)
Áp dụng BĐT thức Cô si cho 3 số , ta có:
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\)
\(\Rightarrow ab+bc+ca+a+b+c+2\ge3+3+2=8\left(đpcm\right)\)
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b+1\right).2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)
\(\Rightarrow A\ge2\sqrt{ab}+2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2\)
\(\Rightarrow A\ge2+4+2=8\)
"=" khi \(a=b=1\)
- Áp dụng BĐT cauchuy ta có :
\(\left\{{}\begin{matrix}x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\\y+\frac{1}{z}\ge2\sqrt{\frac{y}{z}}\\z+\frac{1}{x}\ge2\sqrt{\frac{z}{x}}\end{matrix}\right.\)
- Nhân 3 vế trên lại ta được :
\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge2\sqrt{\frac{x}{y}}.2\sqrt{\frac{y}{z}}.2\sqrt{\frac{z}{x}}\)
Mà \(2\sqrt{\frac{x}{y}}.2\sqrt{\frac{y}{z}}.2\sqrt{\frac{z}{x}}=8\sqrt{\frac{x.y.z}{y.z.x}}=8.1=8\)
=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge8\) ( đpcm )