Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1a):
Ta có:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\left(a+b\right).\dfrac{a+b}{ab}=\dfrac{a^2+2ab+b^2}{ab}=\dfrac{a^2+b^2}{ab}+2\)
Lại có: (a - b)2 = a2 - 2ab + b2 \(\ge\) 0
\(\Rightarrow\) a2 + b2 \(\ge\) 2ab
\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}\ge2\)
\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}+2\ge4\)
Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Bài 2a):
Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
Vậy ta có đpcm
\(\frac{a+b-c}{a}=\frac{a-b+c}{b}=\frac{-a+b+c}{c}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}\)
\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a-a+a\right)-\left(c-c+c\right)+\left(b-b+b\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow\)\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{3.2a}{a^3}=\frac{6a}{a^3}=\frac{6}{a^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có dãy tỉ lệ thức trên bằng:
\(=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a+c-b=b\\b+c-a=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}}\hept{\begin{cases}a+b+c=3c\\a+b+c=3b\\a+b+c=3a\end{cases}\Rightarrow3a=3b=3c\Rightarrow a=b=c}\)
Thay vào M, ta có:
\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(a+a\right)\left(b+b\right)\left(c+c\right)}{abc}=\frac{2a.2b.2c}{abc}=2.2.2=8\)
\(ac=bb=>\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}\)
áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}=\frac{a+2012b}{b+2012c}\)
\(=>\left(\frac{a}{b}\right)^2=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
vì \(\frac{a}{b}=\frac{b}{c}=>\left(\frac{a}{b}\right)^2=\frac{a.b}{b.c}=\frac{a}{c}\)
\(=>\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\left(dpcm\right)\)