Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT Bunhiacopxky:
\(M^2=(a\sqrt{9b(a+8b)}+b\sqrt{9a(b+8a)})^2\)
\(\leq (a^2+b^2)(9ab+72b^2+9ab+72a^2)\)
\(\Leftrightarrow M^2\leq (a^2+b^2)(72a^2+72b^2+18ab)\)
Áp dụng BĐT AM-GM: \(a^2+b^2\geq 2ab\Rightarrow 18ab\leq 9(a^2+b^2)\)
Do đó, \(M^2\leq (a^2+b^2)(72a^2+72b^2+9a^2+9b^2)=81(a^2+b^2)^2\)
\(\Leftrightarrow M\leq 9(a^2+b^2)\leq 144\)
Vậy \(M_{\max}=144\Leftrightarrow a=b=\sqrt{8}\)
Bài 6:
\(a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\)
Vì \(a>1\rightarrow a-1>0\). Do đó áp dụng BĐT Am-Gm cho số dương\(a-1,\frac{1}{a-1}\) ta có:
\((a-1)+\frac{1}{a-1}\geq 2\sqrt{\frac{a-1}{a-1}}=2\)
\(\Rightarrow a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\geq 3\) (đpcm)
Dấu bằng xảy ra khi \(a-1=1\Leftrightarrow a=2\)
Bài 3:
Xét \(\sqrt{a^2+1}\). Vì \(ab+bc+ac=1\) nên:
\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)
\(\Rightarrow \sqrt{a^2+1}=\sqrt{(a+b)(a+c)}\)
Áp dụng BĐT AM-GM có: \(\sqrt{(a+b)(a+c)}\leq \frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\)
hay \(\sqrt{a^2+1}\leq \frac{2a+b+c}{2}\)
Hoàn toàn tương tự với các biểu thức còn lại và cộng theo vế:
\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\leq \frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}=2(a+b+c)\)
Ta có đpcm. Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Bài 4:
Ta có:
\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2\)
\(\Leftrightarrow A+\frac{1}{4}=2a+\frac{b+a}{4a}+b^2=2a+b+\frac{b+a}{4a}+b^2-b\)
Vì \(a+b\geq 1, a>0\) nên \(A+\frac{1}{4}\geq a+1+\frac{1}{4a}+b^2-b\)
Áp dụng BĐT AM-GM:
\(a+\frac{1}{4a}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\Rightarrow A+\frac{1}{4}\geq 2+b^2-b=\left(b-\frac{1}{2}\right)^2+\frac{7}{4}\geq \frac{7}{4}\)
\(\Leftrightarrow A\geq \frac{3}{2}\).
Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow a=b=\frac{1}{2}\)
Lời giải:
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ac=0\)
Khi đó:
\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)
\(=a+b+2c+2\sqrt{ab+ac+bc+c^2}=a+b+2c+2\sqrt{c^2}\)
\(=a+b+2c+2|c|\)
Vì $a,b$ dương nên \(\frac{-1}{c}=\frac{1}{a}+\frac{1}{b}>0\Rightarrow c< 0\Rightarrow 2|c|=-2c\)
Do đó:
\((\sqrt{a+c}+\sqrt{b+c})^2=a+b+2c+2|c|=a+b+2c+(-2c)=a+b\)
\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Lời giải:
Theo hệ quả quen thuộc của BĐT AM-GM thì:
\((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Leftrightarrow (\sqrt{3})^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 1\)
\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{(a+b)(a+c)}}\)
Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\) (BĐT Cauchy)
hay \(\text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)(đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta có BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\) (đúng)
\(\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=1\)
Khi đó áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Tương tự cho 2 BĐT còn lại:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}=VP\)
Xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)
Áp dụng BĐT Bu-nhi-a ta có:
\(\sqrt{a^2+1}=\sqrt{a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{4\left(a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)}\)
\(\ge\dfrac{1}{2}\sqrt{\left(a+\dfrac{1}{\sqrt{3}}.3\right)^2}=\dfrac{1}{2}\sqrt{\left(a+\sqrt{3}\right)^2}=\dfrac{a+\sqrt{3}}{2}\left(a>0\right)\)
Tương tự ta cũng có: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{2b}{b+\sqrt{3}}\)
\(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{2c}{c+\sqrt{3}}\)
=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\)
\(\le2\left(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\right)\) (1)
Áp dụng BĐT phụ: \(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{x+y}\) ta có:
\(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\)
\(=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}\)
\(\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{a+c}{a+c}+\dfrac{b+a}{a+b}+\dfrac{c+b}{b+c}\right)=\dfrac{3}{4}\) (2)
Từ (1); (2)
=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le2.\dfrac{3}{4}=\dfrac{3}{2}\left(đpcm\right)\)
Dấu = xảy ra <=> \(a=b=c=\dfrac{1}{\sqrt{3}}\)