Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử véc tơ \(\overrightarrow{OA}+\overrightarrow{OB}\) nằm trên đường phân giác góc \(\widehat{AOB}\) .
Dựng hình bình hành OABD.
O A B D
Theo quy tắc hình bình hành: \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OD}\).
Theo giả thiết thì OD là tia phân giác góc \(\widehat{AOB}\).
Vì vậy hình bình hành OABD là hình thoi.
Suy ra OA = OB.
- Giả sử OA = OB.
Khi đó hình bình hành OABD có OA = OB nên tứ giác OABD là hình thoi.
Kết luận: Điều kiện cần và đủ để véc tơ \(\overrightarrow{OA}+\overrightarrow{OB}\) nằm trên đường phân giác góc \(\widehat{AOB}\) là OA = OB.
tập hợp các điểm O sao cho vector OA = vector OB ; b) tìm tập hợp các điểm O sao cho OA =- vector OB
a: \(\Leftrightarrow\left\{{}\begin{matrix}OA=OB\\OA\equiv OB\end{matrix}\right.\)
=>Không có điểm O nào thỏa mãn
b: \(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\)
=>O là trung điểm của AB
Hai vecto \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) đối nhau \( \Leftrightarrow \) hai tia OA, OB đối nhau và OA = OB.
\( \Leftrightarrow \) O là trung điểm của AB hay AB là đường kính của đường tròn (O).
Vậy điều kiện cần và đủ để hai vecto \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) đối nhau là AB là đường kính của đường tròn (O).
Gọi M(x,y) là điểm cần tìm
\(\overrightarrow{MA}+\overrightarrow{MB}=(-1-2x;8-2y)\)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=(8-3x;16-3y)\)
Theo giả thiết \(3|\overrightarrow{MA}+\overrightarrow{MB}|=2|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|\), suy ra
\(3\sqrt{(-1-2x)^2+(8-2y)^2}=2\sqrt{(8-3x)^2+(16-3y)^2}\)
\(\Leftrightarrow 9(4x^2+4y^2+4x-32y+65)=4(9x^2+9y^2-48x-96y+320)\)
\(\Leftrightarrow 228x+96y-695=0\)
Vậy tập các điểm M cần tìm là đường thẳng 228x+96y-695=0
Với ba điểm A, B, C phân biệt. Điều kiện cần và đủ để ba điểm thẳng hàng là: ∃ k ∈ R : A B → = k A C →
Đáp án D
Với ba điểm A, B, C phân biệt.Khi A nằm giữa B, C thì hai vecto A B → ; A C → ngược hướng nên
điều kiện cần và đủ để ba điểm A, B, C thẳng hàng và A nằm giữa B, C là: ∃ k < 0 : A B → = k A C →
Đáp án A
Gọi M là trung điểm của AB
Xét ΔOAB có OM là đường trung tuyến
nên \(\overrightarrow{OA}+\overrightarrow{OB}=2\cdot\overrightarrow{OM}\)
=>Giá của vecto OA+vecto OB là đường thẳng OM
Để OM là phân giác của góc AOB thì OM vừa là đường trung tuyến vừa là đường phân giác của ΔOAB
=>ΔOAB cân tại O
=>OA=OB