Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M.N.P = \(-5xy.11xy^2.\frac{7}{5}x^2y^3=-77x^4.y^6\)
Nhận thấy : \(x^4.y^6=\left(x^2.y^3\right)^2\ge0\forall x;y\)
=> \(-77x^4y^6=-77\left(x^2y^3\right)^2\le0\forall x;y\)
=> M.N.P \(\le0\)
=> 3 đơn thức không thể có cùng giá trị dương
\(\left(x,y\inℝ;x,y\ne0\right)\)
\(M=-5xy,N=11xy^2,P=\frac{7}{5}x^2y^3\)
\(\Rightarrow M.N.P=-5xy.11xy^2.\frac{7}{5}x^2y^3=\left(-5.11.\frac{7}{5}\right).\left(x.x.x^2\right).\left(y.y^2.y^3\right)=-49x^4y^6\)
\(\text{Ta có:}x^4>0,y^6>0\Rightarrow x^4y^6>0\Rightarrow-49x^4y^6< 0\)
\(\Rightarrow\orbr{\begin{cases}\text{1 đơn thức âm và 2 đơn thức dương}\\\text{Cả 3 đơn thức đều âm}\end{cases}}\Rightarrow\text{Ba đơn thức không thể có cùng giá trị dương}\left(đpcm\right)\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
6) a) Vì tích của 3 số âm là số âm nên trong đó chắc chắn chứa ít nhất 1 số âm
Bỏ số âm đó ra ngoài. Còn lại 99 số . Chia 99 số thành 33 nhóm. Mỗi nhóm gồn 3 số
=> kết quả mỗi nhóm là số âm
=> Tích của 99 số là tích của 33 số âm => kết quả là số âm
Nhân kết quả đó với số âm đã bỏ ra ngoài lúc đầu => ta được Tích của 100 số là số dương
Xét tích :
\(\left(-\frac{4}{7}a^4b^3\right).\left(5ab^5\right).\left(-2a^7b^2\right)=\left(-\frac{4}{7}.5.\left(-2\right)\right).\left(a^4.a.a^7\right).\left(b^3.b^5.b^2\right)=\frac{40}{7}.a^{12}.b^{10}\)> 0 với mọi a; b
=> Tích 3 số là số dương => cả 3 số đều dương hoặc 2 số âm và 1 số dương