Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1
Để A có nghĩa \(\Rightarrow\frac{m+1}{2}\ge m-1\Rightarrow m\le3\)
a/ \(A\subset B\Leftrightarrow\left[{}\begin{matrix}\frac{m+1}{2}< -2\\m-1\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -5\\m\ge3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -5\\m=3\end{matrix}\right.\)
b/ \(A\cap B=\varnothing\Leftrightarrow\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow-1\le m< 3\)
Đúng bạn
- Nếu \(\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}\le2\end{matrix}\right.\) \(\Leftrightarrow-1\le m\le3\) thì \(A\cap B=\varnothing\) (ktm)
- Nếu \(m< -1\Rightarrow m-1< -2\Rightarrow A\cap B=[m-1;2)\) chứa vô số phần tử
- Nếu \(m>3\Rightarrow A\cap B=(2;\frac{m+1}{2}]\) cũng chứa vô số phần tử
Vậy ko tồn tại m để \(A\cap B\) chỉ chứa 1 phần tử
hình như đề sai đúng không ta ai đấy giải thử cho em xem vs ạ
ta có:
A = {x\(\in\) R; -5 \(\le\) x < 7}
\(\Rightarrow\) A = [-5;7)
\(\Rightarrow\) \(C^A_R\) = (-\(\infty\);-5) \(\cup\) [7;+\(\infty\))
Đáp án: D