Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{5}\)
=> \(\frac{x^4}{3^4}=\frac{y^4}{5^4}=\frac{x^2.y^2}{3^2.5^2}=\frac{225}{225}=1\)
=> x4 = 34 => x = 3 hoặc x = -3
y4 = 54 => x = 5 hoặc x = -5
KL: (x; y) = (3; 5) ; (-3; -5)
Đặt:
\(\frac{x}{3}=\frac{y}{5}=k\)
Ta có:
\(\frac{x}{3}=k\Rightarrow x=k.3\)
\(\frac{y}{5}=k\Rightarrow y=k.5\)
Thế vào \(x^2y^2=225\), ta có:
\(\left(k.3\right)^2.\left(k.5\right)^2=225\)
\(\Rightarrow\left(k^2.15\right)^2=225\)
\(\Rightarrow\left(k^2.15\right)=15\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=1\)hoặc \(-1\)
x ; y tự tìm bạn.
=> x = -3
y = -5
\(\frac{IxI}{IyI}=\frac{3}{2}=>\frac{IxI}{3}=\frac{IyI}{2}=>\frac{IxI^2}{3^2}=\frac{IyI^2}{2^2}=>\frac{x^2}{9}=\frac{y^2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=\frac{5}{5}=1\)
=>x2=9=>x=-3,3
y2=4=>y=-2,2
Vậy (x,y)=(2,3),(2,-3),(-2,3),(-2,-3)
a) Theo đề, ta có:
\(\frac{x}{2}=\frac{y}{3}\) và\(\frac{y}{5}=\frac{z}{7}\) và x+y+z=98
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) và x+y+z=98
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) \(=\frac{x+y+z}{10+15+21}=\frac{98}{46}=\frac{49}{23}\)
Suy ra: \(x=\frac{490}{23};y=\frac{735}{23};z=\frac{1029}{23}\)
b) Theo đề, ta có:
2x=3y=5z và x+y-z=95
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và x+y-z=95
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) \(=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
Suy ra: x=20 ; y=50 ; z=30
c) Theo đề, ta có:
\(\frac{x}{2}=\frac{y}{3}\) va xy=54
Đặt \(\frac{x}{2}=\frac{y}{3}\)\(=t\)
nên x=2t
y=3t
Ta có: x.y =54
2t .3t=54
6t2=54
t2=9
=> t =+3
Suy ra: x=6 hoặc x= -6
y=9 hoặc y= -9
d) Theo đề, ta có:
\(\frac{x}{5}=\frac{y}{3}\) và x2+y2=4
Đặt \(\frac{x}{5}=\frac{y}{3}=t\)
nên x=5t
y=3t
Ta có: x2+y2=4
(5t)2+(3t)2=4
8t2 =4
t2 =\(\frac{1}{2}\)
Suy ra: VÔ LÝ
hok tot nha!!!
a) Ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)
\(x=\frac{5}{13}.3=\frac{15}{13}\)
\(y=\frac{5}{13}.4=\frac{20}{13}\)
b) Ta có: \(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
x = (-2) x 19 = -38
y = (-2) x 21 = -42
c) Ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{4}{16}=\frac{1}{4}\)
\(x^2=\frac{1}{4}.25=\frac{25}{4}\Rightarrow x=+_-\frac{5}{2}\)
\(y^2=\frac{1}{4}.9=\frac{9}{4}\Rightarrow+_-\frac{3}{2}\)
nha bạn!
\(\frac{x}{y}=\frac{3}{4}\)và 2x + 5y = 10
=> \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{2x}{6}=\frac{5y}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)
=> 2x = \(\frac{30}{13}\)=> x = \(\frac{15}{13}\)
5y = \(\frac{100}{13}\)=> y = \(\frac{20}{13}\)
Vậy x = \(\frac{15}{13}\); y = \(\frac{20}{13}\)
21x = 19y và x - y = 4
Ta có :
\(\frac{x}{19}=\frac{y}{21}\)và x - y = 4
Áp dụng tính chất của dayc tỉ số bằng nhau là :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
=> x = -38
y = -42
Vậy x = - 38 ; y = - 42
\(\frac{x}{5}=\frac{y}{3}\)và x 2 - y 2 = 4
Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
=> x = 5k , y = 3k
=> x 2 - y 2 = ( 5 k ) 2 - ( 3 k ) 2 = 25k 2 - 9 k 2 = 4
16 k 2 = 4
k 2 = \(\frac{1}{4}\)
=> k = \(\frac{1}{2}\)hoặc x = \(\frac{-1}{2}\)
+ Xét k = \(\frac{1}{2}\)ta có :
=> x = \(\frac{5}{2}\)và y = \(\frac{3}{2}\)
+Xét k = \(\frac{-1}{2}\)
=> x = \(\frac{-5}{2}\), y = \(\frac{-3}{2}\)
Vậy x = \(\frac{5}{2}\)và y = \(\frac{3}{2}\)
hoặc x = \(\frac{-5}{2}\), y = \(\frac{-3}{2}\)
\(\frac{x}{3}=\frac{y}{5}=k=>x=3k;y=5k;\)
x^2.y^2=(x.y)^2=(3k.5k)^2=(15k^2)^2=225
=>225.k^4=225
=>k^4=1
=>k=-1;k=1
mà x,y<0
=>k=-1
=>x=-3;y=-5
x=-3 y=-5