Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Vì $M$ trung điểm của $AB$ nên $\overrightarrow{MA}, \overrightarrow{MB}$ là 2 vecto đối nhau.
$\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$
$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}=2\overrightarrow{IM}+(\overrightarrow{MA}+\overrightarrow{MB})$
$=2\overrightarrow{IM}$ (đpcm)
b)
\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{IN}+\overrightarrow{NA}+2(\overrightarrow{IN}+\overrightarrow{NB})\)
\(=3\overrightarrow{IN}+\overrightarrow{NA}+2\overrightarrow{NB}=3\overrightarrow{IN}-\overrightarrow{NB}+2\overrightarrow{NB}\)
\(=3\overrightarrow{IN}+\overrightarrow{NB}\) (đề không đúng???)
c)
\(\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{IP}+\overrightarrow{PA}-3(\overrightarrow{IP}+\overrightarrow{PB})=-2\overrightarrow{IP}+(\overrightarrow{PA}-3\overrightarrow{PB})\)
\(=-2\overrightarrow{IP}+(3\overrightarrow{PB}-3\overrightarrow{PB})=-2\overrightarrow{IP}\)
Lời giải:
a) Vì $M$ trung điểm của $AB$ nên $\overrightarrow{MA}, \overrightarrow{MB}$ là 2 vecto đối nhau.
$\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$
$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}=2\overrightarrow{IM}+(\overrightarrow{MA}+\overrightarrow{MB})$
$=2\overrightarrow{IM}$ (đpcm)
b)
\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{IN}+\overrightarrow{NA}+2(\overrightarrow{IN}+\overrightarrow{NB})\)
\(=3\overrightarrow{IN}+\overrightarrow{NA}+2\overrightarrow{NB}=3\overrightarrow{IN}-\overrightarrow{NB}+2\overrightarrow{NB}\)
\(=3\overrightarrow{IN}+\overrightarrow{NB}\) (đề không đúng???)
c)
\(\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{IP}+\overrightarrow{PA}-3(\overrightarrow{IP}+\overrightarrow{PB})=-2\overrightarrow{IP}+(\overrightarrow{PA}-3\overrightarrow{PB})\)
\(=-2\overrightarrow{IP}+(3\overrightarrow{PB}-3\overrightarrow{PB})=-2\overrightarrow{IP}\)
\(3\overrightarrow{MA}+2\overrightarrow{MC}=0\Leftrightarrow3\overrightarrow{MA}+2\overrightarrow{MA}+2\overrightarrow{AC}=0\)
\(\Leftrightarrow5\overrightarrow{MA}=-2\overrightarrow{AC}\Leftrightarrow\overrightarrow{MA}=-\frac{2}{5}\overrightarrow{AC}\Leftrightarrow\overrightarrow{AM}=\frac{2}{5}\overrightarrow{AC}\)
\(\overrightarrow{NA}-2\left(\overrightarrow{NA}+\overrightarrow{AB}\right)=0\Leftrightarrow\overrightarrow{NA}=-2\overrightarrow{AB}\)
\(\overrightarrow{NG}=\overrightarrow{NA}+\overrightarrow{AG}=-2\overrightarrow{AB}+\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{AM}=-\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{2}{5}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{GM}=-\frac{1}{3}\overrightarrow{AB}+\frac{1}{15}\overrightarrow{AC}=\frac{1}{5}\left(-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)=\frac{1}{5}\overrightarrow{NG}\)
\(\Rightarrow\overrightarrow{NG}=5\overrightarrow{GM}\)
a) Từ điểm I trên AB thỏa mãn IA = 1/2 IB ta vẽ đường song song với BC. Điểm N nằm trên đó.
B) tương tự câu a)
a: vecto AB+2vecto BM=vecto 0
=>vecto AB=-2 vecto BM=-2 vecto MB
=>vecto BA=2 vecto BM
=>M là trung điểm của AB
b: =>2 vecto NA=3 vecto NB
=>vecto NA=3/2 vecto NB
=>NA=3/2NB và N nằm giữa A và B