Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AD=\frac{1}{3}\times CD\Rightarrow S_{ABF}=\frac{1}{3}\times S_{BFC}\)
\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEF}=\frac{1}{3}\times S_{ABF}\)
\(\Rightarrow S_{BEF}=\frac{1}{3}\times\frac{1}{3}\times S_{BFC}=\frac{1}{9}\times S_{BFC}\Rightarrow S_{BEF}=\frac{1}{10}\times S_{BEC}\)
\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEC}=\frac{1}{3}\times S_{ABC}\)
\(\Rightarrow S_{BEF}=\frac{1}{10}\times\frac{1}{3}\times S_{ABC}=\frac{1}{30}\times S_{ABC}\)
\(\Rightarrow S_{BAC}=30\times S_{BEF}=5400\left(cm^2\right)\)
Lời giải:
Ta có:
$\frac{S_{CEA}}{S_{CAB}}=\frac{AE}{AB}=\frac{1}{4}$
$S_{CEA}=S_{CAB}\times \frac{1}{4}=48\times \frac{1}{4}=12$ (cm2)
$S_{CEB}=S_{ABC}-S_{CEA}=48-12=36$ (cm2)
a, - Ta có : \(\left\{{}\begin{matrix}S_{AMD}=\dfrac{1}{2}AM.h\\S_{ADC}=\dfrac{1}{2}AC.h\end{matrix}\right.\)
Mà \(AC=3AM\)
\(\Rightarrow S_{ADC}=3S_{AMD}\)
Lại có : \(\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}BC.h\\S_{ADC}=\dfrac{1}{2}DC.h\end{matrix}\right.\)
Mà \(BC=2DC\)
\(\Rightarrow S_{ABC}=2S_{ADC}=2.3S_{ADM}=6S_{ADM}\)
b, CMTT câu a ta được : \(\left\{{}\begin{matrix}S_{AMN}=\dfrac{1}{6}S_{ABC}\\S_{CMD}=\dfrac{1}{3}S_{ABC}\\S_{BND}=\dfrac{1}{4}S_{ABC}\end{matrix}\right.\)
\(\Rightarrow S_{DMN}=\left(1-\dfrac{1}{6}-\dfrac{1}{3}-\dfrac{1}{4}\right)S_{ABC}=\dfrac{1}{4}S_{ABC}=160\left(cm^2\right)\)
SDIE=1/2SAID=8
SBDE=1/2SDEC=2SBIE+16
SABE=1/2SAEC
=>SABI+SBIE=1/2(2SBIE+16+8+16)
=>SABI=20
Mà SABI=2/9SABC
=>SABC=90cm2
I là trung điểm của AC nên AC=2xAI
=>\(S_{ANC}=2\times S_{ANI}=2\times48=96\left(cm^2\right)\)
Vì AM=MN=NB
mà AM+MN+NB=AB
nên \(AM=MN=NB=\dfrac{AB}{3}\)
=>\(AN=\dfrac{2}{3}\times AB\)
=>\(S_{ANC}=\dfrac{2}{3}\times S_{ABC}\)
=>\(S_{ABC}=96:\dfrac{2}{3}=96\times\dfrac{3}{2}=144\left(cm^2\right)\)