Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
Bài 1:
\(D=-3x^2+x+15x-5-3\left(2x^2-5x+2\right)\)
\(=-3x^2+16x-5-6x^2+15x-6\)
\(=-9x^2+31x-11\)
\(=-9\cdot\dfrac{1}{9}+\dfrac{31}{3}-11\)
=-11-1+31/3=-12+31/3=-5/3
b: \(E=x^2+x-56-x^2+7x-10=8x-66\)
\(=-\dfrac{8}{5}-66=-\dfrac{338}{5}\)
c: \(F=-3\left(2x^2+x-16x-8\right)-\left(-3x^2+2x-15x+10\right)-4x^2+24x\)
\(=-6x^2+45x+24+3x^2+13x-10-4x^2+24x\)
\(=-4x^2+82x+14\)
\(=-4\cdot9-82\cdot3+14=-268\)
mình làm bài 2 trước nha:
a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y
=(a.y+a.y)-(b.y+b.y)
=2.a.y-2.b.y
=2.y.(a-b)
b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
B1 :
a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 = 100^2+100^2 = 20000
b, = (2x^2+16x+32)-2y^2
= 2.(x+4)^2-2y^2
= 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)
c, <=> (x^2-3x)+(2x-6) = 0
<=> (x-3).(x+2) = 0
<=> x-3=0 hoặc x+2=0
<=> x=3 hoặc x=-2
B2 :
P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x
k mk nha
Bai 1
a)B=(x+1)2+(y-2)2
Voi x=99,y=102
=>B= 1002+1002
=20000
b)\(2x^2-2y^2+16x+32\)
=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)
=\(2\left[\left(x+4\right)^2-y^2\right]\)
=2(x-y+4)(x+y+4)
c)\(x^2-3x+2x-6=0\)
=>x(x-3)+2(x-3)=0
=>(x-3)(x+2)=0
=>x=-2;3
Bai 2
\(P=\frac{9-x^2}{x^2-3x}\)
=\(-\frac{x^2-9}{x\left(x-3\right)}\)
=\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)
=\(\frac{-x-3}{x}\)
a)Đk:\(\left\{{}\begin{matrix}x^2-4\ne0\\2x^2-x^3\ne0\\x^2-3x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)\ne0\\x^2\left(2-x\right)\ne0\\x\left(x-3\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow x\ne\left\{2;-2;0;3\right\}\)
b)\(P=\left[\dfrac{\left(2+x\right)^2}{\left(2+x\right)\left(2-x\right)}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}\right]:\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{\left(2+x\right)^2-4x^2-\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}.\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)
\(=\dfrac{4+4x+x^2-4x^2-4+4x-x^2}{\left(2+x\right)\left(2-x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)
\(=\dfrac{x\left(8x-4x^2\right)}{\left(2+x\right)\left(x-3\right)}\) (sai đề chỗ nào ko em)
c)\(\left|x-5\right|=2\Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
Thay x=7 vào bt P ta được: \(P=\dfrac{7\left(8.7-4.7^2\right)}{\left(2+7\right)\left(7-3\right)}=-\dfrac{245}{9}\)
Câu 4 :
\(x^2+y^2-2\left(x-y-1\right)=0\)
\(\Leftrightarrow x^2+y^2-2x+2y+2=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy \(x=1;y=-1\)
Làm c1,2,3 đi bạn