Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3^{16}:3=3^{16-1}=3^{15}\)
\(b,3^6.3^4.3^2.3=3^{6+4+2+1}=3^{13}\)
\(c,\left(-\frac{1}{4}\right).\left(6\frac{2}{11}\right)+\left(3\frac{9}{11}\right).\left(-\frac{1}{4}\right)=\left(-\frac{1}{4}\right).\frac{68}{11}+\frac{42}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right)\left(\frac{68}{11}+\frac{42}{11}\right)\)
\(=\left(-\frac{1}{4}\right).10\)
\(=-\frac{10}{4}=-\frac{5}{2}\)
\(d,\left(-\frac{1}{2}\right)^3+\frac{1}{2}:5=\left(-\frac{1}{2}\right)\left(\left(\frac{1}{2}\right)^2-\frac{1}{5}\right)\)
\(=-\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{5}\right)\)
\(=-\frac{1}{2}.\frac{1}{20}\)
\(=-\frac{1}{40}\)
\(g,1\frac{1}{25}+\frac{2}{21}-\frac{1}{25}+\frac{19}{21}=\frac{26}{25}+\frac{2}{21}-\frac{1}{25}+\frac{19}{21}\)
\(=\left(\frac{26}{25}-\frac{1}{25}\right)+\left(\frac{2}{21}+\frac{19}{21}\right)\)
\(=1+1\)
\(=2\)
1.
a) x : \(\left(\dfrac{3}{4}\right)^3\) =\(\left(\dfrac{3}{4}\right)^3\)
x = \(\left(\dfrac{3}{4}\right)^3.\left(\dfrac{3}{4}\right)^3\)
x = \(\dfrac{3}{4}^{3+3}\)
x = \(\dfrac{3}{4}^6\)
x = \(\dfrac{729}{4096}\)
b) \(\left(\dfrac{2}{5}\right)^5.x=\left(\dfrac{2}{5}\right)^8\)
x = \(\left(\dfrac{2}{5}\right)^8:\left(\dfrac{2}{5}\right)^5\)
x = \(\dfrac{2}{5}^{8-5}\)
x = \(\dfrac{2}{5}^3\)
x = \(\dfrac{8}{5}\)
2.
(0,36)\(^8\) \([\left(0,6\right)^3]^8\) = (0,6)\(^{3.8}\) = ( 0,6)\(^{24}\)
( 0,216)\(^4\) = \([\left(0,6\right)^3]^4\) = (0.6)\(^{3.4}\) = ( 0,6)\(^{12}\)
\(x:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^2\)
\(x=\left(\dfrac{3}{4}\right)^2.\left(\dfrac{3}{4}\right)^3\) <=> \(x=\left(\dfrac{3}{4}\right)^{2+3}\)
=> \(x=\left(\dfrac{3}{4}\right)^5\)
b, \(\left(\dfrac{2}{5}\right)^5.x=\left(\dfrac{2}{5}\right)^8\)
\(x=\left(\dfrac{2}{5}\right)^8:\left(\dfrac{2}{5}\right)^5\Leftrightarrow x=\left(\dfrac{2}{5}\right)^{8-5}\)
=>\(x=\left(\dfrac{2}{5}\right)^3\)
bài 2 : Với bài này ta cần áp dụng quy tắc: \(\left(x^m\right)^n=x^{m.n}\)
\(0,36^8=\left[\left(0,6\right)^2\right]^8=\left(0,6\right)^{16}\)
\(0,216^4=\left[\left(0,6\right)^3\right]^4=\left(0,6\right)^{12}\)
Bài 1:
a, 2225 = (23)75 = 875
3150 = (32)75 = 975
Vì 875 < 975 nên 2225 < 3150
b, 212 = (24)3 = 163 ; 418 = (42)9 = 169
Bài 2:
a, 3300 = (33)100 = 27100
5200 = (52)100 = 25100
Vì 27100 > 25100 nên 3300 > 5200
b, Do \(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left|y^2-25\right|\ge0\end{cases}\forall x,y\Rightarrow\left(x-3\right)^2+\left|y^2-25\right|\ge0}\) (1)
Mà \(\left(x-3\right)^2+\left|y^2-25\right|=0\) (2)
Từ (1) và (2) => \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y^2-25\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)
Bài 3:
2x = -3y = 4z
=> \(\frac{2x}{12}=\frac{-3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{-y}{4}=\frac{z}{3}\)
=> \(\frac{x}{6}=\frac{-2y}{8}=\frac{3z}{9}=\frac{x-2y-3z}{6+8-9}=\frac{30}{5}=6\)
=> x = 36, y = -24, z = 18
a) \(x:\left(\frac{3}{4}\right)^3=\left(\frac{3}{4}\right)^2\)
\(x=\left(\frac{3}{4}\right)^2.\left(\frac{3}{4}\right)^3\)
\(x=\left(\frac{3}{4}\right)^5\)
\(x=\frac{243}{1024}\)
vay \(x=\frac{243}{1024}\)
b) \(\left(\frac{2}{5}\right)^5.x=\left(\frac{2}{5}\right)^8\)
\(x=\left(\frac{2}{5}\right)^8:\left(\frac{2}{5}\right)^5\)
\(x=\left(\frac{2}{5}\right)^3\)
\(x=\frac{8}{125}\)
vay \(x=\frac{8}{125}\)
4) \(\left(0,36\right)^8=\left(0,6^2\right)^8=\left(0,6\right)^{16}\)
\(\left(0,216\right)^4=\left(0,6^3\right)^4=\left(0,6\right)^{12}\)
5) a) \(\left(3,5\right)^3=42,875\)
b) \(\left(-\frac{4}{11}\right)^2=\frac{16}{121}\)
c) \(\left(0,5\right)^4.6^4=3^4=81\)
d) \(\left(-\frac{1}{3}\right)^5:\left(\frac{1}{6}\right)^5=\left(-2\right)^5=-32\)
a: \(=2^2\cdot9\cdot\dfrac{1}{6\cdot9}\cdot\dfrac{4^2}{9^2}=\dfrac{2^2}{6}\cdot\dfrac{2^4}{3^4}=\dfrac{2^6}{2\cdot3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)
b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)
c: \(=\dfrac{\left(\dfrac{1}{2}\right)^3\cdot2^3\cdot\left(\dfrac{1}{2}\right)^2}{\left(-8\right)^2\cdot16}\cdot2^6=\dfrac{\dfrac{1}{2^2}}{64\cdot16}\cdot64=\dfrac{1}{4}:16=\dfrac{1}{64}=\left(\dfrac{1}{8}\right)^2\)
a: \(=2^2\cdot9\cdot\dfrac{1}{3^3\cdot2}\cdot\dfrac{2^4}{3^4}=\dfrac{2^4\cdot2^2}{2}\cdot\dfrac{9}{3^3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)
b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)
c: \(=\dfrac{\dfrac{1}{2^3}\cdot\dfrac{1}{2^2}\cdot8}{\left(-8\right)^2\cdot2^4}\cdot2^6=\dfrac{1}{2^2}\cdot2^6:2^{10}=\dfrac{2^4}{2^{10}}=\dfrac{1}{2^6}=\left(\dfrac{1}{8}\right)^2\)
Câu 1:
2A=2+22+...+2201
A=2A-A=2201-1
⇒A+1=2201 là một lũy thừa.
Câu 2:
3B=32+33+...+32006
2B=3B-B=32006-3
⇒2B+3=32006 là một lũy thừa của 3(ĐPCM)
Câu 3 không rõ đề nhé!
bạn thử xem lại xem bạn có chép sai ở đâu ko nhé