\(M=0,5x^4-4x^3+2x-2,5\) và \(N=2x^3+x^2+1,5\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2023

\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)

\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)

-x^3 -5x + 2 _ 3x + 8 x^3 -8x - 6

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

20 tháng 4 2018

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)

=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)

= \(x^2-2x+1\)

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

14 tháng 4 2018

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)

\(f\left(x\right)=2x^6+3x^4+x^2+1\)

b) \(2.1+3.1+1+1=7\)

c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)

=> f(x) >=1 => dpcm

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4x4+5x3x34x3+3x2x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1=x4+2x2+1

b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4

M(1)=(1)4+2.(1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)

18 tháng 12 2017

f(x)=x5+3x2−5x3−x7+x3+2x2+x5−4x2−x7⇒f(x)=2x5−4x3+x2

Đa thức có bậc là 5

g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2

Đa thức có bậc là 8.

Thu gọn và sắp xếp các đa thức f (x) và g (x) theo lũy thừa giảm của biến rồi tìm bậc của đa thức đó.