Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk lm lun nhe
=x2.[x4-x2+2x+2]
=x2.[x2[x2-1]+2[x+1] ]
=x2.[x2[x-1].[x+1]+2[x+1] ]
x2[x+1].[x3-x2+2]
a) x5 + x +1
=x5-x4+x4-x3+x3-x2+x2+x+1
=(x5+x4+x3)-(x4+x3+x2)+(x2+x+1)
=x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)
=(x2+x+1)(x3-x2+1)
b,c,d làm tương tự câu a
nhớ tích cho mình với nhé
1. Đa thức x3 - x2 - 4 có nghiệm là x = 2 nên ta thêm, bớt, tách, nhóm làm xuất hiện nhân tử x - 2:
\(x^3-x^2-4=x^3-2x^2+x^2-2x+2x-4\)\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right).\)
2. Làm tương tự.
a/x3-x2-4=x3-2x2+x2-22=x2(x-2)+(x+2)(x-2)
=(x2+x+2)(x-2)
b/x3+x2+4=x3+2x2-x2-2x+2x+4=x2(x+2)-x(x+2)+2(x+2)
=(x2_x+2)(x+2)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
a)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x+4\right)\left(x^2+x\right)-12\)
Đặt \(t=x^2+x\) ta có:
\(\left(t+4\right)t-12=t^2+4t-12\)
\(=\left(t-2\right)\left(t+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
b)\(x^8+x+1\)
\(=x^8-x^2+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x^3+1\right)\left(x-1\right)+1\right]\)
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1=x^3(x^2+x+1)-x(x^2+x+1)+x^2+x+1=(x^3-x+1)(x^2+x+1)
\(x^5+x^4+1\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
Ta có : x5 - x4 + x4 - x3 - x4 + x3 - x2 + x2 - x + x - 1
= x4(x - 1) + x3(x - 1) - x3(x - 1) - x2(x - 1) + x2(x - 1) + (x - 1)
= (x4 + x3 - x3 - x2 + x2 + 1) (x - 1)
= (x4 + 1)(x - 1)
\(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
Mình làm giống ban kia nha
k tui nha
thanks