K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

a=1.....1(2n số 1)=1....1(n số 1).\(10^n\) +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1) \(\Rightarrow10^n\)  =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương

3 tháng 9 2017

Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)

cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng

\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)

phân tích 10^2n = (10^n)^2

10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được

\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)

=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)

=\(\frac{\left(10^n+8\right)^2}{3^2}\)

=\(\left(\frac{10^n+8}{3}\right)^2\)

vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương

3 tháng 9 2017

bạn cho mik hỏi câu b thì b là số gồm n+1 c/s nào

5 tháng 9 2023

tick giúp mình nha

Lời giải

Đặt k = 11...1(n chữ số 1).

Thì a = 11...1111(2n chữ số 1) = 11..100..0 + 11...11 = k(9k + 1) + k = 9k2 + 2k.

Tương tự, b = 10k + 1; c = 6k.

=> a + b + c + 8 = 9k2 + 2k + 10k + 1 + 6k + 8 = 9k2 + 18k + 9 = (3k + 3)2.

Vậy a + b + c + 8 là số chính phương.

Chứng minh lại

Ta có:

a + b + c + 8 = (9k2 + 2k) + (10k + 1) + (6k) + 8 = 9k2 + 18k + 9 = (3k + 3)2

Ta thấy rằng (3k + 3)2 là bình phương của số tự nhiên (3k + 3). Do đó, a + b + c + 8 là số chính phương.

Kết luận

Bằng cách đặt k = 11...1(n chữ số 1), ta có thể chứng minh được rằng a + b + c + 8 là số chính phương.

5 tháng 9 2023

??

-(

bn lấy nó đâu ra dz  

30 tháng 7 2017

a= 1 .... 1 ( 2n số 1 ) = 1 ... 1 ( n số 1 ) . 10n +1 ... 1 

 b = 1 ... 1 ( n + 1 số 1 ) = 1 ... 1 .10+1

c= 6..6 ( n số 6 ) = 6.1 ... 1 

Đặt k bằng 1...1 ( n số 1 ) => 10n = 9k + 1 

a + b + c +8 = k ( 9k + 2 ) + 10k +1 + 6k + 8 = 9k2 + 18k +9 = ( 3k + 3)2 là số chính phương 

Vậy...

Ps : k chắc cko mấy