Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho C= 1+3+32+...+311
a) \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3\right)\)
\(=40+3^4.40+3^8.40\)
\(=40.\left(1+3^4+3^8\right)\) chia hết cho 40.
b) \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^9.13\)
\(=13.\left(1+3^3+3^6+3^9\right)\)chia hết cho 13
=> điều phải chứng minh
C=1+3+3^2+...+3^11
C=(1+3+3^2)+...+(3^9+3^10+3^11)
C=13+13.3^3+...+13.3^9
C=13(1+3^3+3^6+3^9) chia hết 13
C=1+3+3^2+...+3^11
C=(1+3+3^2+3^3)+...+(3^8+3^9+3^10+3^11)
C=40+40.3^4+40.3^8
=40(1+3^4+3^8) chia hết 40
\(C=1+3+3^2+.....+3^{11}.\)
\(\Rightarrow C=\left(1+3+3^2\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=13+3^3.13+....+3^9.13\)
\(\Rightarrow C=13.\left(1+3^3+....+3^9\right)\)
Vì \(13⋮13\)
Do đó : \(C⋮13\)
\(C=1+3+3^2+.....+3^{11}\)
\(\Rightarrow C=\left(1+3+3^2+3^3\right)+....+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=40+40.3^4+3^8.40\)
\(\Rightarrow C=40.\left(1+3^4+3^8\right)\)
Vì \(40⋮40\)
Do đó \(C⋮40\)(đpcm)
a,C1+3+32)+.....+39,(1+3+32)
C=13+.....+39.13
C=13(1+.....+39) chia hết cho 13
Vậy C chia hết cho 13
b,C=(1+3+32+33)+.....+38(1+3+32+33)
C=40+.....+38+40
C=40(1+.....+38.40
C=40(1+.....+38 chia hết cho 40
Vậy C chia hết cho 40
Bạn tham khảo 2 link này:
b) https://olm.vn/hoi-dap/detail/104629170538.html
a)https://olm.vn/hoi-dap/detail/8732513603.htm
C=như trên
đến đoạn này mình thấy đề bạn thiếu hay sao ý . đnág nhẽ là C=1+3+3^2+3^3 +..+3^1 ko nên làm theo cái mình sửa nhá
=> 3C=\(3+3^2+3^3+3^4+...+3^{12}\)
=>3C-C=\(\left(3+3^2+3^3+3^4+...+3^{12}\right)-\left(1+3+3^2+3^3+...+3^{11}\right)\)
=>2C=\(3^{12}-1=531440⋮40\)
=> 2C chia hết cho 40
=> C cũng chia hết cho 40
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
\(C=1+3+3^2+...+3^{11}\)
a) \(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+3^6\left(1+3+3^2\right)+3^9\left(1+3+3^2\right)\)
\(=13+3^3.13+3^6.13+3^9.13\)
\(=13\left(1+3^3+3^6+3^9\right)⋮13\)
\(\Rightarrow C⋮13\)
b) \(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4.40+3^8.40\)
\(=40\left(1+3^4+3^8\right)⋮40\)
\(\Rightarrow C⋮40\)
C=(1+3+32)+(33+34+35)+...+(39+310+311)
C=13+33(1+3+32)+...+39(1+3+32)
C=13+33.13+...+39.13
C=13(1+33+...+39)
Vì nó có thừa số 13 nên chia hết cho 13 (1+33+...+39 là STN)
C=(1+3+32+33)+(34+35+36+37)+(38+39+310+311)
C=40+34(1+3+32+33)+38(1+3+32+33)
C=40+34.40+38.40
=40(1+34+38)
=>C chia hết cho 40
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.