Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.3x^2-12xy=3x\left(x-4y\right)\)
\(b.x^2+7x-2\left(x+7\right)=x\left(x+7\right)-2\left(x+7\right)=\left(x-2\right)\left(x+7\right)\)
\(c.8x^3-8x^2+2x=2x\left(4x^2-4+1\right)=2x\left(2x-1\right)^2\)
\(d.x^2-y^2+12y-36=x^2-\left(y-6\right)^2=\left(x-y-6\right)\left(x-y+6\right)\)
Bài làm
a) 3x2 - 12xy
= 3x( x - 4y )
b) x2 + 7x - 2( x + 7 )
= x( x + 7 ) - 2( x + 7 )
= ( x + 7 )( x - 2 )
c) 8x3 - 8x2 + 2x
= 2x( 4x2 - 4x + 1 )
= 2x( 2x - 1 )2
d) x2 - y2 + 12y - 36
= x2 - ( y2 - 12y + 36 )
= x2 - ( y2 - 2.y.6 + 62 )
= x2 - ( y - 6 )2
= ( x - y + 6 )( x + y - 6 )
# Học tốt #
\(A=x^2-4xy+4y^2+\frac{x}{2}+\frac{2}{x}+3=\left(x-2y\right)^2+\left(\frac{x}{2}+\frac{2}{x}\right)+3\)
\(\left(x-2y\right)^2\ge0\)
\(\frac{x}{2}+\frac{2}{x}\ge2\sqrt{\frac{x}{2}.\frac{2}{x}}=2\)
\(A\ge0+2+3=5\)
Giá trị nhỏ nhất của A bằng 5
"=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2y=0\\\frac{x}{2}=\frac{2}{x}\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x dương
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
Ta có:
D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18
D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18
D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1
D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1
Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3
Hay x = 5 , y = -3
Đc chx bạn
\(b,x^2+6x-3\left(x+6\right)=x\left(x+6\right)-3\left(x+6\right)=\left(x+6\right)\left(x-3\right)\\ c,2x^3y-8x^2y+8xy=2xy\left(x^2-4x+4\right)=2xy\left(x-2\right)^2\\ d,y^2-x^2-12y+36=\left(y^2-12y+36\right)-x^2=\left(y-6\right)^2-x^2=\left(y-x-6\right)\left(y+x-6\right)\)