K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d) Ta có: \(\left(x+3y\right)^2+6x+18y+9\)

\(=\left(x+3y\right)^2+2\cdot\left(x+3y\right)\cdot3+3^2\)

\(=\left(x+3y+3\right)^2\)

a) Ta có: \(x^2-8x+16\)

\(=x^2-2\cdot x\cdot4+4^2\)

\(=\left(x-4\right)^2\)

b) Ta có: \(16x^2+y^2-8xy\)

\(=\left(4x\right)^2-2\cdot4x\cdot y+y^2\)

\(=\left(4x-y\right)^2\)

c) Ta có: \(49a^2+4b^2+28ab\)

\(=\left(7a\right)^2+2\cdot7a\cdot2b+\left(2b\right)^2\)

\(=\left(7a+2b\right)^2\)

e) Ta có: \(\left(3x-2\right)^2-\left(3x+2\right)^2+4x^2+36\)

\(=\left[\left(3x-2\right)-\left(3x+2\right)\right]\cdot\left[\left(3x-2\right)+\left(3x+2\right)\right]+4\left(x^2+9\right)\)

\(=\left(3x-2-3x-2\right)\left(3x-2+3x+2\right)+4\left(x^2+9\right)\)

\(=-4\cdot6x+4\left(x^2+9\right)\)

\(=4\left(-6x+x^2+9\right)\)

\(=4\left(x^2-6x+9\right)\)

\(=4\left(x-3\right)^2\)

\(=\left(2x-6\right)^2\)

30 tháng 7 2020

tại sao từ x2 - 6x + 9 lại có thể chuyển thành (x-3)2 vậy ạ? (ở câu e ấy)

29 tháng 6 2019

a) \(x^2-6x+9=x^2-2.3.x+3^2=\left(x-3\right)^2\)

b)\(x^2+4x+4=x^2+2.2.x+2^2=\left(x+2\right)^2\)

c)\(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)

d)\(4x^2+12xy+9y^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2=\left(2x+3y\right)^2\)

e)\(x^2-8x+16=x^2-2.4.x+4^2=\left(x-4\right)^2\)

29 tháng 6 2019

a) x-6x +9 = (x-3)2                                       

b) x2+4x +4= (x+2)2

c) 4x2+4x+1= (2x+1)2

d) 4x2+12xy+9y2 = (2x+3y)2

e) x2-8x+16 = (x-4)2

Đây chính là hằng đẳng thức nhé bn....

6 tháng 9 2017

a ) Ta có : -x3 + 3x2 - 3x + 1

= 1 - 3x + 3x2 - x3

= (1 - x)

b) Ta có : 8 - 12x + 6x2 - x3

= 23 - 3.22.x + 3.2.x2 - x3

= (2 - x)3

26 tháng 6 2018

a, -x3 + 3x- 3x + 1

   = -x+ 3.x2.1 - 3.x.12 + 1

   = ( -x + 1 )3

10 tháng 5 2021

a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)

\(=\left(5x+\frac{1}{2}y\right)^2\)

b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)

c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)

\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)

d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)

\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)

\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)

3 tháng 9 2023

Có cái cc

3 tháng 7 2018

a) \(x^2+6x+9=x^2+2.3x+3^2=\left(x+3\right)^2\)

b) \(x^2+x=\text{ }\left[x^2+2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2=\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\) 

c) \(2xy^2+x^2y^4=\left[\left(xy^2\right)^2+2.xy^2+1^2\right]-1^2=\left(xy^2+1\right)^2-1^2\)

a)x2-6x+9

=x2-2.x.3+32

=(x-3)2

b)4x2+4x+1

=(2x)2+2.2x.1+12

=(2x+1)2

c)4x2+12xy+9y2

=(2x)2+2.2x.3y+(3y)2

=(2x+3y)2

d)4x4-4x2+4

=(2x2)2-2.2x2.2+22

=(2x2-2)2

23 tháng 7 2016

Áp dụng bất đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\) với a = 2x + 3y , b = 1

Được : \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

18 tháng 8 2020

\(4x^2-\frac{1}{9}\left(y+1\right)^2=\left(2x\right)^2-\left(\frac{1}{3}\left(y+1\right)\right)^2\)

                                       \(=\left(2x-\frac{1}{3}\left(y+1\right)\right)\left(2x+\frac{1}{3}\left(y+1\right)\right)\)

                                       \(=\left(2x-\frac{1}{3}y-\frac{1}{3}\right)\left(2x+\frac{1}{3}y+\frac{1}{3}\right)\)