Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(13-\sqrt{\left(8x-1\right)^2}=\sqrt{x^2}\) (*)
\(\Leftrightarrow13-\left|8x-1\right|=\left|x\right|\)
Th1: \(8x-1\ge0\Leftrightarrow x\ge\dfrac{1}{8}\)
(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(N\right)\)
Th2: \(x\le0\)
(*) \(\Leftrightarrow13+8x-1=-x\Leftrightarrow9x=-12\Leftrightarrow x=-\dfrac{4}{3}\left(N\right)\)
Th3: \(\left\{{}\begin{matrix}8x-1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow\dfrac{1}{8}\le x\le0\) (vô lý)
Th4: \(\left\{{}\begin{matrix}8x-1\le0\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\dfrac{1}{8}\)
(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(L\right)\)
Kl: x= 14/9 , x= -4/3
b) \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(2x+3\right)^2}=3\Leftrightarrow\left|x+1\right|+\left|2x+3\right|=3\)(*)
Th1: \(x\ge-1\)
(*) \(\Leftrightarrow x+1+2x+3=3\Leftrightarrow3x=-1\Leftrightarrow x=-\dfrac{1}{3}\left(N\right)\)
Th2: \(x\le-\dfrac{3}{2}\)
(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(N\right)\)
Th3: \(\left\{{}\begin{matrix}x+1\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow-1\le x\le-\dfrac{3}{2}\) (vô lý)
Th4: \(\left\{{}\begin{matrix}x+1\le0\\2x+3\ge0\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}\le x\le-1\)
(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(L\right)\)
Kl: x= -1/3 , x= -7/3
Bài 2:
a: \(A=\left|5x+1\right|-\dfrac{3}{8}>=-\dfrac{3}{8}\)
Dấu '=' xảy ra khi x=-1/5
b: \(B=\left|-\dfrac{1}{6}x+2\right|+0.25>=0.25\)
Dấu '=' xảy ra khi x=12
Bài 3:
a: \(A=2018-\left|x+2019\right|< =2018\)
Dấu '=' xảy ra khi x=-2019
b: \(=-10-\left|2x-\dfrac{1}{1009}\right|< =-10\)
Dấu '=' xảy ra khi x=1/2018
1.
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)
b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)
c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)
2.
a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}
b) ĐK:x\(\ge-3\)
\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)
Vậy S={-2}
3.
a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)
Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)
Vậy GTNN của A=\(\dfrac{3}{4}\)
Câu 2:
\(x^2-2\left(m-3\right)x-1=0\)
a=1; b=-2m+6; c=-1
Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(2m-6\right)^2-3\cdot\left(-1\right)\)
\(=4m^2-24m+36+3\)
\(=\left(2m-6\right)^2+3\ge3\)
Dấu '=' xảy ra khi m=3
Bài 1)
ĐK: \(x\geq 0; x\neq -4\)
Ta có:
\(A=\frac{1}{\sqrt{x}+2}+\frac{1}{2+\sqrt{x}}-\frac{2\sqrt{x}}{x+4}\)
\(=\frac{2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x+4}=2\left(\frac{1}{\sqrt{x}+2}-\frac{\sqrt{x}}{x+4}\right)\)
\(=2.\frac{x+4-x-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=2.\frac{4-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=\frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}\)
\(B=(\sqrt{2}+\sqrt{3}).\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)
\(=2+\sqrt{6}-\sqrt{6}+\frac{\sqrt{3}.\sqrt{111}}{\sqrt{111}}=2+\sqrt{3}\)
Để \(A=B\Leftrightarrow \frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}=2+\sqrt{3}\)
PT rất xấu. Mình nghĩ bạn đã chép sai biểu thức A.
Bài 2 : Tọa độ điểm B ?
Bài 3:
Để pt có hai nghiệm thì \(\Delta'=(m-3)^2-(m^2-1)>0\)
\(\Leftrightarrow 10-6m>0\Leftrightarrow m< \frac{5}{3}\)
Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2(m-3)\\ x_1x_2=m^2-1\end{matrix}\right.\)
Khi đó:
\(4=2x_1+x_2=x_1+(x_1+x_2)=x_1+2(m-3)\)
\(\Rightarrow x_1=10-2m\)
\(\Rightarrow x_2=2(m-3)-(10-2m)=4m-16\)
Suy ra: \(\Rightarrow x_1x_2=(10-2m)(4m-16)\)
\(\Leftrightarrow m^2-1=8(5-m)(m-4)\)
\(\Leftrightarrow m^2-1=8(-m^2+9m-20)\)
\(\Leftrightarrow 9m^2-72m+159=0\)
\(\Leftrightarrow (3m-12)^2+15=0\) (vô lý)
Vậy không tồn tại $m$ thỏa mãn điều kiện trên.
1.
PT $\Leftrightarrow y^2+2xy+x^2=x^2+3x+2$
$\Leftrightarrow (x+y)^2=(x+1)(x+2)$
Với $x\in\mathbb{Z}$ dễ thấy rằng $(x+1,x+2)=1$. Do đó để tích của chúng là scp thì $x+1,x+2$ cũng là những scp.
Đặt $x+1=a^2, x+2=b^2$ với $a,b\in\mathbb{N}$
$\Rightarrow b^2-a^2=1\Leftrightarrow (b-a)(b+a)=1$
Với $a,b\in\mathbb{N}$ dễ thấy $b-a=b+a=1$
$\Rightarrow b=1; a=0$
$\Rightarrow x=-1$
$(x+y)^2=(x+1)(x+2)=0\Rightarrow y=-x=1$
Vậy $(x,y)=(-1,1)$
2.
Đặt $x-1=a$ thì bài toán trở thành:
Cho $a,y>0$. CMR:
$\frac{1}{a^3}+\frac{a^3}{y^3}+\frac{1}{y^3}\geq 3(\frac{1-2a}{a}+\frac{a+1}{y})$
$\Leftrightarrow \frac{1}{a^3}+\frac{a^3}{y^3}+\frac{1}{y^3}+6\geq \frac{3}{a}+\frac{3a}{y}+\frac{3}{y}$
BĐT trên luôn đúng do theo BĐT AM-GM thì:
$\frac{1}{a^3}+1+1\geq \frac{3}{a}$
$\frac{1}{y^3}+1+1\geq \frac{3}{y}$
$\frac{a^3}{y^3}+1+1\geq \frac{3a}{y}$
Ta có đpcm
Dấu "=" xảy ra khi $a=y=1$
$\Leftrightarrow x=2; y=1$
a/ \(\left(x+3\right)\left(3\left(x^2+1\right)^2+2\left(x+3\right)^2\right)=5\left(x^2+1\right)^3\)
\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2+2\left(x+3\right)^3-5\left(x^2+1\right)^3=0\)
\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2-3\left(x^2+1\right)^3+2\left(x+3\right)^3-2\left(x^2+1\right)^3=0\)
\(\Leftrightarrow3\left(x^2+1\right)^2\left(-x^2+x+2\right)+2\left(-x^2+x+2\right)\left(\left(x+3\right)^2+\left(x+3\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right)=0\)
\(\Leftrightarrow\left(-x^2+x+2\right)\left[3\left(x^2+1\right)^2+2\left(x+3+\dfrac{x^2+1}{2}\right)^2+\dfrac{3\left(x^2+1\right)^2}{4}\right]=0\)
\(\Leftrightarrow-x^2+x+2=0\) (phần ngoặc phía sau luôn dương)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b/ \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5\left(x^2+3x-1-\left(x^2+2x-1\right)\right)^2=0\)
Đặt \(\left\{{}\begin{matrix}a=x^2+2x-1\\b=x^2+3x-1\end{matrix}\right.\)
\(3a^2-2b^2+5\left(b-a\right)^2=0\Leftrightarrow8a^2+3b^2-10ab=0\)
\(\Leftrightarrow\left(4a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}4a=3b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2+2x-1\right)=3\left(x^2+3x-1\right)\\2\left(x^2+2x-1\right)=x^2+3x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
1: ĐKXĐ: x<>0
\(\Leftrightarrow x^2-6\left(m-1\right)x+9m^2=0\)
\(\text{Δ}=\left(6m-6\right)^2-4\cdot1\cdot9m^2\)
\(=36m^2-72m+36-36m^2=-72m+36\)
Để pt vô nghiệm thì -72m+36<0
=>-72m<-36
hay m>1/2
2:ĐKXD: x<>9/8
\(\Leftrightarrow2x^2-\left(m+1\right)x+\dfrac{1}{8}m^2+1=0\)
\(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(\dfrac{1}{8}m^2+1\right)\)
\(=m^2+2m+1-m^2-8=2m-7\)
Để pt vô nghiệm thì 2m-7<0
hay m<7/2