Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả thiết => \(\frac{M\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{N\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{32x-19}{\left(x+1\right)\left(x-2\right)}\)
=> M(x-2) + N(x+1) = 32x - 19
<=> M.x - 2.M + N.x + N = 32.x -19
=> (M+ N).x + (N - 2.M) = 32.x - 19
=> M+ N = 32 và -2M + N = -19
=> M = 17, N = 15
vậy M.N = 17. 15 =...
a) Xét \(\Delta ABC\)và \(\Delta HBA\), ta có:
\(\widehat{B}\)chung, \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)(đpcm)
b) \(\Delta ABC\)vuông tại A \(\Rightarrow BC^2=AB^2+AC^2\)\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=\sqrt{900+1600}=\sqrt{2500}=50\left(cm\right)\)
Ta có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{30.40}{50}=24\left(cm\right)\)
Vậy \(AH=24cm\)
A{ờ.........................................tao cũng đéo biết chứng minh câu a nữa hì hì!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
B .2534cm2 mày ạ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
C .2345 % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~BỐ MÀY CẮT ĐẦU MOI~
A B C M D E N P I
a) Xét tứ giác ABME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\) => ABME là HCN
b)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến => AM = BM = MC = 1/2BC
=> tam giác AMC và t/giác AMB cân
t/giác AMB cân tại M có MD là đường cao => MD cx là đường trung tuyến
=> BD = AD = 1/2AB = 1/2.6 = 3 (cm)
T/giác AMC cân tại M có ME là đường cao => ME cx là đường trung tuyến
=> AE = EC = 1/2AC = 1/2.8 = 4 (cm)
SADME = AD.AE = 3.4 = 12 (cm2)
c) Xét tứ giác AMNC có EM = EN (gt)
AE = EC (cmt)
MN \(\perp\)AC (gt)
=> AMNC là hình thoi
d) Gọi I là giao điểm của BP với AM
Xét t/giác AIE và t/giác CPE
có: \(\widehat{AIE}=\widehat{CPE}\) (đđ)
AE = EC (cmt)
\(\widehat{IAE}=\widehat{ECP}\)(slt vì AM // NC)
=> AIE = t/giác CPE (g.c.g)
=> AI = PC (2 cạnh t/ứng)
CMTT: IM = NP
Xét t/giác ABC có AM và BE là 2 đường trung tuyến cắt nhau tại I
=> I là trong tâm của t/giác ABC => IM/AI = 1/2
=> NP/PC = 1/2
A B C D
cái đường AE nó dài lắm ): nên mình ko vẽ nữa
a, Xét tam giác ADB và tam giác CAB ta có :
^ADB = ^CAB = 900
^B _ chung
Vậy tam giác ADB ~ tam giác CAB ( g.g )
b, tam giác ABC vuông tại A, AH là đường cao
Áp dụng định lí Pytago cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC^2=144+81=225\Rightarrow BC=15\)cm
mà tam giác ADB ~ tam giác CAB ( cma )
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng )
\(\Rightarrow AD=\frac{AB.AC}{BC}=\frac{12.9}{15}=\frac{36}{5}\)cm
b: \(AB=\sqrt{20^2-16^2}=12\left(cm\right)\)
CH=16^2/20=256/20=12,8cm
AH=12*16/20=192/20=9,6cm
ΔHAC vuông tại H có AD là phân giác
=>DC/AC=DH/AH
=>DC/5=DH/3=HC/8=12,8/8=1,6
=>DC=8cm
c: góc BAD=90 độ-góc CAD
góc BDA=90 độ-góc HAD
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>BA=BD=BE
=>ΔDAE vuông tại A
ΔDAE vuông tại A có AH vuông góc DE
nên HD*HE=AH^2
ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC=HD*HE