Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 2x=(23)y+1 . Suy ra: x=3y+3
(32)y=3x-9 Suy ra : 2y=x-9
thay x = 3y+3 ,ta có
2y=3y+3-9
-y=-6 nên y=6
thay y =6 vào x=3.6+3
x=21
x+y=6+21=27
Mik chỉ nghĩ vậy thôi nha chứ chưa suy nghĩ cách trình bày hợp lí
\(5x\left(x-4y\right)-4y\)
Thay vào ta được:
\(5\left(\frac{-1}{5}\right)[\left(\frac{-1}{5}\right)-4\left(\frac{-1}{2}\right)]-4\left(\frac{-1}{2}\right)\)
\(=-[\left(\frac{-1}{5}\right)-2]-2\)
\(=\left(\frac{1}{5}-2\right)-2\)
\(=\frac{11}{5}-2\)
\(=\frac{1}{5}\)
\(5x\left(x-4y\right)-4y=5x^2-20xy-4y\)
thay x= -1/5; y= -1/2 vào ta có:
\(5\left(-\frac{1}{5}\right)^2-20\left(-\frac{1}{5}\right)\left(-\frac{1}{2}\right)-4\left(-\frac{1}{2}\right)^2=\frac{5}{25}-\frac{20}{10}-\frac{4}{4}=\frac{1}{5}-2-1=\frac{1}{5}-\frac{15}{5}=-\frac{14}{5}\)
1) Ta có: \(x^2-2x-9y^2+6y\)
\(=x^2-2x+1-9y^2+6y-1\)
\(=\left(x-1\right)^2-\left(3y-1\right)^2\)
\(=\left(x-1-3y+1\right)\left(x-1+3y-1\right)\)
\(=\left(x-3y\right)\left(x+3y-2\right)\)
3) Ta có: \(x^2-9-4xy+4y^2\)
\(=\left(x-2y\right)^2-3^2\)
\(=\left(x-2y-3\right)\left(x-2y+3\right)\)
4) Ta có: \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=2b\cdot2a=4ab\)
5) Ta có: \(\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)
6) Ta có: \(\left(x-y\right)^3+3xy\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]\)
\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
7) Ta có: \(4x^2-12x-46\)
\(=\left(2x\right)^2-2\cdot2x\cdot3+9-55\)
\(=\left(2x-3\right)^2-55\)
\(=\left(2x-3-\sqrt{55}\right)\left(2x-3+\sqrt{55}\right)\)
\(A=x^2-10x+y^2-6y+34\)
\(=\left(x^2-10x+25\right)+\left(y^2-6y+9\right)\)
\(=\left(x-5\right)^2+\left(y-3\right)^2\)
\(B=x^2-6x+y^2+4y+13\)
\(=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2+\left(y+2\right)^2\)
\(C=x^2-2xy+\left(2y\right)^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)