Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)
\(P=\left(0,5-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right):\left(-2\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{2}\right)\)
\(=\left(\dfrac{-5-6}{10}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=-\dfrac{11}{10}:\left(-3\right)+\dfrac{1}{4}\)
\(=-\dfrac{11}{10}.\left(-\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{37}{60}\)
Vậy \(P=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right):2\dfrac{2}{17}\right]\)
\(=\left(\dfrac{2}{25}-\dfrac{126}{125}\right):\dfrac{4}{7}:\left[\left(\dfrac{13}{4}-\dfrac{59}{9}\right).\dfrac{36}{17}\right]\)
\(=-\dfrac{116}{125}.\dfrac{7}{4}:\left(-\dfrac{119}{36}.\dfrac{36}{17}\right)\)
\(=\dfrac{-29.7}{125}:\left(-7\right)=\dfrac{29}{125}\)
Vậy \(Q=\dfrac{29}{125}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
~ Học tốt ~
Bài 1:
1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)
\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)
\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)
\(=3^2=9\)
2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)
\(=2^7:2^3:\dfrac{1}{2^4}\)
\(=2^4.2^4=256\)
3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)
\(=\dfrac{43}{48}\)
4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)
\(=-3-1+\dfrac{1}{8}\)
\(=-4+\dfrac{1}{8}\\ \)
\(=-\dfrac{31}{8}\)
5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)
Chúc bạn học tốt
\(a,A=\left(3\dfrac{5}{6}-1\dfrac{1}{3}\right)\left(3\dfrac{4}{15}-2\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left(3+\dfrac{5}{6}-1+\dfrac{1}{3}\right)\left(3+\dfrac{4}{15}-2+\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left[\left(3-1\right)+\left(\dfrac{5}{6}+\dfrac{1}{3}\right)\right]+\left[\left(3-2\right)+\left(\dfrac{4}{15}+\dfrac{3}{5}\right)\right]\)
\(\Leftrightarrow A=\left[2+\left(\dfrac{5}{6}+\dfrac{2}{6}\right)\right]+\left[1+\left(\dfrac{4}{15}+\dfrac{9}{15}\right)\right]\)
\(\Leftrightarrow A=\left(2+\dfrac{7}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=\left(2+1+\dfrac{1}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=3\dfrac{1}{6}+1\dfrac{13}{15}\)
Vậy...
\(b,B=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^{10}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(\Leftrightarrow B=\dfrac{6}{\left(2.3\right).5}\)
\(\Leftrightarrow B=\dfrac{6}{6.5}\)
\(\Leftrightarrow B=\dfrac{1}{5}\)
Vậy....
tìm giá trị của biểu thức sau
b)\(\left(0,25\right)^6.\left(-4\right)^6-\dfrac{72^2}{36^2}\)
\(=\left[0.25.\left(-4\right)\right]^4.\left(72:36\right)^2\)
\(=-1.4\)
\(=-4\)
c)\(9.\left(\dfrac{1}{3}\right)^3:\left[\left(-\dfrac{2}{3}+0.5-1\dfrac{1}{2}\right)\right]\)
\(=9.\dfrac{1}{27}:\left[\dfrac{-8}{27}+\dfrac{1}{2}-\dfrac{3}{2}\right]\)
=\(9.\dfrac{1}{27}:\left[\dfrac{-8}{27}+\left(-1\right)\right]\)
\(=9.\dfrac{1}{27}.\dfrac{-27}{35}\)
\(=\dfrac{3.3.1.9.\left(-3\right)}{-3.\left(-9\right).35}=\dfrac{-9}{35}\)
a. \(\left(0,25\right)^6.\left(-4\right)^6-\dfrac{72^2}{36^2}\)
\(=\left[0,24.\left(-4\right)\right]^6-\left(\dfrac{72}{36}\right)^2\)
\(=\left(-1\right)^6-2^2\)
\(=1-4=-3\)
b. \(9.\left(\dfrac{1}{3}\right)^3:\left[\left(\dfrac{-2}{3}\right)^3+0,5-1\dfrac{1}{2}\right]\)
\(=9.\dfrac{1}{27}:\left[\left(\dfrac{-8}{27}\right)+\dfrac{1}{2}-\dfrac{3}{2}\right]\)
\(=9.\dfrac{1}{27}:\dfrac{-35}{27}\)
\(=\dfrac{-9}{35}\)
a, \(\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^{10}}{\left(20.5\right)^5}=\dfrac{20^5.5^{10}}{20^5.5^5}=5^5\)
b,\(\dfrac{\left(0,9\right)^5}{\left(0,3\right)^6}=\dfrac{\left(0,3.3\right)^5}{\left(0,3\right)^6}=\dfrac{\left(0,3\right)^5.3^5}{\left(0,3\right)^6}=\dfrac{3^5}{\left(0,3\right)}\)
\(\dfrac{\left(13\dfrac{1}{4}-1\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{7}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(=\dfrac{1\dfrac{25}{108}.230\dfrac{1}{25}+46\dfrac{3}{4}}{4\dfrac{16}{21}:\left(-1\dfrac{20}{21}\right)}=\dfrac{330\dfrac{1}{25}}{-2\dfrac{18}{41}}=-135,3164\)
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
\(a,C=\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ta có \(\left|\dfrac{1}{3}x+4\right|\ge0\)
\(\Rightarrow\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\ge1\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\left|\dfrac{1}{3}x+4\right|=0\)
\(\Leftrightarrow\dfrac{1}{3}x+4=0\)
\(\Leftrightarrow\dfrac{1}{3}x=0-4=-4\)
\(\Leftrightarrow x=-4:\dfrac{1}{3}\)
\(\Leftrightarrow x=-12\)
Vậy \(\min\limits_C=1\dfrac{2}{3}\Leftrightarrow x=-12\)
\(b,D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)
Ta có : \(\left\{{}\begin{matrix}\left|x-6\right|\ge-x+6\\\left|x+\dfrac{5}{4}\right|\ge x+\dfrac{5}{4}\end{matrix}\right.\)
\(\Rightarrow\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\ge-x+6+x+\dfrac{5}{4}=\dfrac{29}{4}\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}-x+6\ge0\\x+\dfrac{5}{4}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le6\\x\ge-\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(\min\limits_D=\dfrac{29}{4}\Leftrightarrow-\dfrac{5}{4}\le x\le6\)
b) \(D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)
\(D=\left|6-x\right|+\left|x+\dfrac{5}{4}\right|\ge\left|6-x+x+\dfrac{5}{4}\right|=\dfrac{29}{4}\)
Dấu = xảy ra khi \(\left(6-x\right)\left(x+\dfrac{5}{4}\right)\ge0\Leftrightarrow-\dfrac{5}{4}\le x\le6\)
vậy \(D_{min}=\dfrac{29}{4}\) khi \(-\dfrac{5}{4}\le x\le6\)
`# \text {04th5}`
\(M=\dfrac{1}{3} - (6 \dfrac{1}{4} - 3) + \dfrac{2}3 \\ = (\dfrac{1}3 + \dfrac{2}3) - (\dfrac{25}4 - 3) \\ = 1 - \dfrac{13}4 \\ = \dfrac{-9}4\)
M = nhé.