\(a^2+b^2=1;a^4+b^4=\frac{1}{2}.\). Tính \(a^{2020}+b^{2020}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

Ta có: 

\(a^2+b^2=1\Leftrightarrow\left(a^2+b^2\right)^2=1\Leftrightarrow a^4+b^4+2a^2b^2=1\)

\(\Leftrightarrow a^2b^2=\frac{1}{4}\Leftrightarrow b^2=\frac{1}{4a^2}\)

=> \(a^2+\frac{1}{4a^2}=1\Leftrightarrow4a^4-4a^2+1=0\Leftrightarrow\left(2a^2-1\right)^2=0\Leftrightarrow a^2=\frac{1}{2}\)

=> \(b^2=\frac{1}{2}\)

=> \(a^{2020}+b^{2020}=\left(a^2\right)^{1010}+\left(b^2\right)^{1010}=\left(\frac{1}{2}\right)^{1010}+\left(\frac{1}{2}\right)^{1010}=2.\frac{1}{2^{1010}}=\frac{1}{2^{2009}}\)

22 tháng 8 2019

a)

\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)

b)

B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)

22 tháng 8 2019

a. \(A=\frac{2020^3+1}{2020^2-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020^2-2020+1}=2020+1=2021\)

b. \(B=\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}=2020-1=2019\)

NV
18 tháng 8 2020

Bạn tham khảo:

Câu hỏi của Nobody - Toán lớp 8 | Học trực tuyến

26 tháng 10 2019

\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2+\frac{1}{a^2}}=2\\ \)(do Bđt cosi)=> \(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\\ \)

Dấu "=" xảy ra <=> a=b=c=1

=>B=3

26 tháng 10 2019

Bất đẳng thức cosi mình chưa học

25 tháng 10 2019

\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{b^2}{b^2}}+2\sqrt{\frac{c^2}{c^2}}=6\)

Dấu = xảy ra khi a^4=b^4=c^4=1 <=> \(a=\pm1;b=\pm1;c\pm1\)

-> B = 3

25 tháng 8 2020

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)

 \(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)

Khi đó  Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)

= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020

= 1 + 1 + 1 = 3

Vậy P = 3 

11 tháng 2 2020

1.Tìm điều kiện xác định của phương trình:

a) 1x2+11x2+1 -4xx4xx =0 (1)

b) 1x211x21 -2020 (2)

c) x2020x2019x2020x2019 + x2021x2+1 (2)

Giải:

a) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (1) xác định là x ≠ 0.

b) Để phương trình (2) xác định thì x2 - 1 ≠ 0 ⇔ (x + 1)(x - 1) ≠ 0

\(\left[{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\) ⇔ x ≠ \(\pm\) 1

Vậy điều kiện để phương trình (2) xác định là x ≠ \(\pm\) 1.

c) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (3) xác định là x ≠ 2019.

11 tháng 2 2020

cảm ơn bạn nha .ha

14 tháng 2 2020

\(a.\frac{x+5}{2021}+\frac{x+6}{2020}+\frac{x+7}{2019}=-3\\ \Leftrightarrow\frac{x+5}{2021}+1+\frac{x+6}{2020}+1+\frac{x+7}{2019}+1=0\\ \Leftrightarrow\frac{x+2026}{2021}+\frac{x+2026}{2020}+\frac{x+2026}{2019}=0\\ \Leftrightarrow\left(x+2026\right)\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}\right)=0\\\Leftrightarrow x+2026=0\left(Vi\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}\ne0\right)\\ \Leftrightarrow x=-2026\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{-2026\right\}\)

\(b.\frac{2-x}{100}-1=\frac{1-x}{101}-\frac{x}{102}\\ \Leftrightarrow\frac{2-x}{100}+1=\frac{1-x}{101}+1+1-\frac{x}{102}\\\Leftrightarrow \frac{102-x}{100}-\frac{102-x}{101}-\frac{102-x}{102}=0\\ \Leftrightarrow\left(102-x\right)\left(\frac{1}{100}-\frac{1}{101}-\frac{1}{102}\right)=0\\ \Leftrightarrow102-x=0\left(Vi\frac{1}{100}-\frac{1}{101}-\frac{1}{102}\ne0\right)\\ \Leftrightarrow x=102\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{102\right\}\)

14 tháng 2 2020

c/ PT tương đương

\(\frac{x+1}{93}-1+\frac{x-2}{45}-2+\frac{x+4}{32}-3=0\)

\(\Leftrightarrow\frac{x-92}{93}+\frac{x-92}{45}+\frac{x-92}{32}=0\)

\(\Leftrightarrow\left(x-92\right)\left(\frac{1}{93}+\frac{1}{45}+\frac{1}{32}\right)=0\Rightarrow x=92\)

6 tháng 3 2020

Ta có \(B=1+2+3+...+2020=\frac{2020\cdot2021}{2}\)

\(2A=\left(1^3+2020^3\right)+\left(2^3+2019^3\right)+...+\left(2020^3+1^3\right)\)

Áp dụng: \(\left(a^n+b^n\right)⋮\left(a+b\right)\)với n lẻ

Suy ra \(\left(1^3+2020^3\right)⋮2021,\left(2^3+2019^3\right)⋮2021,...,\left(2020^3+1^3\right)⋮2021\)

\(\Rightarrow2A⋮2021\)

Tương tự \(2A=\left(1^3+2019^3\right)+...+\left(2019^3+1^3\right)+2\cdot2020^3\) chia hết cho 2020

Mà \(\left(2020,2021\right)=1\)suy ra \(2A⋮2020\cdot2021\Rightarrow A⋮2020\cdot2021\div2=B\)

6 tháng 3 2020

\(A=1^3+2^3+3^3+...+2020^3\)

\(=\left(1+2+3+...+2020\right)^2\)

Vậy \(A⋮B\)