\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Mình làm theo cách của mình học ở trường là như sau:

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3x}\)

= \(\dfrac{a.\left(2bz-3cy\right)}{a.a}=\dfrac{2b\left(3cx-az\right)}{2b.2b}=\dfrac{3c\left(ay-2bx\right)}{3x.3x}\)

=\(\dfrac{2abz-3acy}{a^2}=\dfrac{6cbx-2abz}{2b^2}=\dfrac{3cay-6cbx}{9c^2}\)

=\(\dfrac{2abz-3acy}{a^2}+\dfrac{6cbx-2abz}{2b^2}+\dfrac{3cay-6cbx}{9c^2}\)

=\(\dfrac{0}{a^2+4b^2+9c^2}=0\)

=> \(\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{z}{3c}=\dfrac{y}{2b}\\\dfrac{x}{a}=\dfrac{y}{2b}\end{matrix}\right.\)

=> \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)( ĐPCM)

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

8 tháng 7 2017

Bài 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x-2y=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\2z-4x=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=8\end{matrix}\right.\)

Vậy \(x=4;y=6;z=8\)

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}=\dfrac{2abz-3acy+6bcx-2baz+3cay-6bcx}{a^2+4b^2+9c^2}\)

\(\Rightarrow\left\{{}\begin{matrix}2bz-3cy=0\Rightarrow2bz=3cy\Rightarrow\dfrac{y}{2b}=\dfrac{z}{3c}\\3cx-az=0\Rightarrow3cx=az\Rightarrow\dfrac{x}{a}=\dfrac{z}{3c}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\left(đpcm\right)\)

Vậy \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

17 tháng 7 2017

Từ \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

\(\Rightarrow\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

\(=\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

\(=\dfrac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2bz-3cy}{a}=0\\\dfrac{3cx-az}{2b}=0\\\dfrac{ay-2bx}{3c}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

17 tháng 7 2017

Cái này bn để ý né ở trên tỉ lệ thức nhé. Để ý sự liên quan của chúng. Ko bt giải thích sao nữa ???

25 tháng 12 2017

Ta có : \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

=> \(\dfrac{\left(2bz-3cy\right)a}{a^2}=\dfrac{\left(3cx-az\right)2b}{4b^2}=\dfrac{\left(ay-2bx\right)3c}{9c^2}\)

\(\dfrac{2bza-3cya}{a^2}=\dfrac{6cxb-2bza}{4b^2}=\dfrac{3cya-6cxb}{9c^2}\)

Áp dụng t/c dãy tỉ số bằng nhau :

\(\dfrac{2bza-3cya}{a^2}=\dfrac{6cxb-2bza}{4b^2}=\dfrac{3cya-6cxb}{9c^2}=\dfrac{2bza-3cya+6xb-2bza+3cya-6cxb}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)Ta có : \(\dfrac{2bza-3cya}{a^2}=0\)

=> 2bza - 3cya = 0

=> 2bza = 3cya

=> \(\dfrac{y}{2b}=\dfrac{z}{3c}\) (1)

Ta có : \(\dfrac{6cxb-2bza}{4b^2}=0\)

=> 6cxb - 2bza = 0

=> 6cxb = 2bza

=> 3cx = za

=> \(\dfrac{z}{3c}=\dfrac{x}{a}\) (2)

Từ (1),(2) => \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (ĐPCM)

22 tháng 3 2017

Câu a thì dài, câu b thì ngắn. Xin giải câu b trước để đi ngủ

b) Giải:

\(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) nên:

\(f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)

\(f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000\)

\(f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000\)

Vậy \(f\left(32\right)=100000\)

22 tháng 3 2017

dễ mà

t thì chẳng thấy dễ chút nào nhưng t làm dc

28 tháng 3 2017

Theo đầu bài ta có :\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

Lại có a,b,c\(\ne\)0 vì mẫu phải khác 0

=>\(\dfrac{2bz-3cy}{a}.\dfrac{a}{a}=\dfrac{3cx-az}{2b}.\dfrac{2b}{2b}=\dfrac{ay-2bx}{3c}.\dfrac{3c}{3c}\)

=>\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}=\dfrac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)

\(\dfrac{2abz-3acy}{a^2}=0\Rightarrow2abz=3acy\) => 2bz = 3cy => \(\dfrac{z}{3c}=\dfrac{y}{2b}\) (1)

\(\dfrac{6bcx-2abz}{4b^2}=0\) => 6bcx = 2abz => 3cx = az => \(\dfrac{x}{a}=\dfrac{z}{3c}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (đpcm)