Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)
\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)
c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)
Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)
\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)
a) 4x -8 ≥ 3(3x-1)-2x +1
⇒4x -8 ≥7x -2
⇒4x -7x ≥ -2 +8
⇒-3x ≥ 6
⇒x≤-2
Vậy bpt có nghiệm là:{x|x≤-2}
b) (x-3)(x+2)+(x+4)2≤ 2x (x+5)+4
⇔ x2+2x - 3x - 6 +x2 + 8x +16≤ 2x2 + 10x +4
⇔ x2 +2x - 3x + x2 + 8x - 2x2- 10x ≤ 4+6-16
⇔ -3x ≤ -6
⇔ x≥ 2
Vậy bpt có tập nghiệm là: {x|x≥2}
a: \(=6x^4-9x^3+3x^2-4x^3+6x^2-2x+10x^2-15x+5\)
\(=6x^4-13x^3+19x^2-17x+5\)
b: \(=6x^4-\dfrac{9}{4}x^3-\dfrac{9}{2}x^2-\dfrac{8}{3}x^3+x^2+2x-\dfrac{20}{3}x^2+\dfrac{5}{2}x+5\)
\(=6x^4-\dfrac{59}{12}x^3-\dfrac{67}{6}x^2+\dfrac{9}{2}x+5\)
c: \(=3x^4-\dfrac{9}{8}x^3-\dfrac{3}{4}x^2+8x^3-3x^2-6x-\dfrac{4}{3}x^2+\dfrac{1}{2}x+1\)
\(=3x^4-\dfrac{55}{8}x^3-\dfrac{25}{12}x^2-\dfrac{11}{2}x+1\)
Cái này áp dụng hằng đẳng thức 100%
a, \(\left(3x-1\right)^3=27x^3-3.9x^2+3.3x-1=27x^3-27x^2+9x-1\)
b, \(\left(4x-\dfrac{1}{2}\right)^2=16x^2-2.4x.\dfrac{1}{2}+\dfrac{1}{4}=16x^2-4x+\dfrac{1}{4}\)
c, \(\left(\dfrac{1}{3}x+1\right)^3=\dfrac{1}{27}x^3+3.\dfrac{1}{9}x^2+3.\dfrac{1}{3}x+1=\dfrac{1}{27}x^3+\dfrac{1}{3}x^2+x+1\)
d, \(\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)^2=\dfrac{4}{9}x^2+2.\dfrac{2}{3}x.\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{4}{9}x^2+\dfrac{2}{3}x+\dfrac{1}{4}\)
e, \(x^6-1=\left(x^3\right)^2-1=\left(x^3-1\right)\left(x^3+1\right)\)
f, \(27x^3+8=\left(3x\right)^3+2^3=\left(3x+2\right)\left(9x^2-6x+4\right)\)
g, \(9x^2-4=\left(3x\right)^2-2^2=\left(3x-2\right)\left(3x+2\right)\)
a) \(\left(3x-1\right)^3=21x^3-27x^2+9x-1\)
b) \(\left(4x-\dfrac{1}{2}\right)^2=16x^2-4x+\dfrac{1}{4}\)
c) \(\left(\dfrac{1}{3}x+1\right)^3=\dfrac{1}{27}x^3+\dfrac{1}{3}x^2+x+1\)
d) \(\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)^2=\dfrac{4}{9}x^2+\dfrac{2}{3}x+\dfrac{1}{4}\)
e) \(x^6-1=\left(x^3\right)^2-1=\left(x^3-1\right)\times\left(x^3+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
f) \(27x^3+8=\left(3x+2\right)\left(9x^2-6x+4\right)\)
g) \(9x^2-4=\left(3x-2\right)\left(3x+2\right)\)