K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Bài toán 1 : Chứng minh : Với mọi số tự nhiên n thì
an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Lời giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

CHÚC BẠN HỌC TỐT MÔN TOÁN NHÁ!!! vÀ CÁC MÔN KHÁC NỮA!!! ( Nếu thấy câu trl của mk đúng thì cho mk 1 tick nhak m.n) Thanks!!!vui

23 tháng 4 2018

Đặt A=n(n+1)(n+2)(n+3)+1A=n(n+1)(n+2)(n+3)+1

=[n(n+3)][(n+1)(n+2)]+1=[n(n+3)][(n+1)(n+2)]+1

=(n2+3n)(n2+2n+n+2)+1=(n2+3n)(n2+2n+n+2)+1

Đặt n2+3=tn2+3=t

=> A=t(t+2)+1A=t(t+2)+1

=t2+2t+1=t2+2t+1

=(t+1)2=(t+1)2

=> A là số chính phương

Vậy với mọi số tự nhiên n thì n(n+1)(n+2)(n+3)+1n(n+1)(n+2)(n+3)+1 là số chính phương ( đpcm )

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1
= (n2
 + 3n) (n2
 + 3n + 2) + 1
= (n2
 + 3n)2
 + 2(n2
 + 3n) + 1
= (n2
 + 3n + 1)2
Với n là số tự nhiên thì n2
 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

22 tháng 4 2018

Bài toán 1 : Chứng minh : Với mọi số tự nhiên n thì 
an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Lời giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

CHÚC BẠN HỌC TỐT MÔN TOÁN NHÁ!!! vÀ CÁC MÔN KHÁC NỮA!!! ( Nếu thấy câu trl của mk đúng thì cho mk 1 k nhak m.n) Thanks!!!vui

29 tháng 3 2015

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

29 tháng 3 2015

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

11 tháng 4 2019

a= [n(n+3][(n+1)(n+2)]+1

a=[n^2+3n][n^2+3n+2]+1

ĐẶt n^2+3n+1=b( b thuộc Z)

=> a=(b-1)(b+1)+1

=> a=b^2-1+1

=> a=b^2

=> a=(n^2+3n+1)^2

Mà n là số tự nhiên =>  n^2+3n+1 là số nguyên => a là số chính phương

T i ck nha

a=n(n+1)(n+2)(n+3)+1

=(n2+3n)(n2+3n+2)+1

Đặt n2+3n+1=m(m thuộc N*)

=>a= (m-1)(m+1)+1=m2

Vậy...................

11 tháng 1 2017

mk kobt

mk mới hok lp 5

xin  lỗibn

[​IMG]

11 tháng 1 2017

Tao không biết và tao cũng chẳng quan tâm