Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1
sử dụng phương pháp thế nha bn , rút 1 ẩn từ phương trình đơn giản rồi thế vào phương trình còn lại rồi giải bình thường . tập làm đi cho quen nha bn :)
a: \(x\in\left(-1;2\right)\)
b: \(x\in[8;10)\cup\left[25;30\right]\)
c: \(x\in\left(-\infty;-5\right)\cup[7;+\infty)\)
\(\left\{{}\begin{matrix}3x+2y=7\\x^2+y^2-7x+xy=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=7\\x^2+y^2-3x^2-2xy+xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=7\\-2x^2-xy+y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=7\\-\left(x+y\right)\left(2x-y\right)=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}3x+2y=7\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-7\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}3x+2y=7\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy .......
1: \(x\in\left(1;5\right)\cup\left(-\infty;-2\right)\)
2: x>1
4: \(x\in\left(-2;+\infty\right)\)