K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

Đề bài là phân số tối giản.

15 tháng 3 2021

b) \(B=\frac{14n+17}{21n+25}\)

Gọi \(ƯCLN(14n+17;21n+25)=d\left(d\inℕ^∗\right)\)

Ta có:

\(\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(14n+17\right)⋮d\\2\left(21n+25\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}\)

\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)

\(\Rightarrow42n+51-42n-50⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)(vì \(d\inℕ^∗\))

\(\RightarrowƯCLN(14n+17;21n+25)=1\)

\(\Rightarrow B=\frac{14n+17}{21n+25}\)là phân số tối giản với mọi số tự nhiên n. (câu a) cũng sửa là "với mọi số tự nhiên n")

Vậy B luôn là phân số tối giản với mọi số tự nhiên n.

16 tháng 6 2019

a, \(A=\frac{12n+1}{30n+2}\)

Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

b, \(B=\frac{14n+17}{21n+25}\)

Gọi \(d=ƯCLN\left(14n+17;21n+25\right)\)

\(\Rightarrow\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...

16 tháng 6 2019

#Giải:

a) Gọi d = ƯC (12n + 1, 30n + 2 )

Xét hiệu :

(30n + 2) - (12n + 1) chia hết cho d

2(30n + 2) - 5 (12n + 1 ) chia hết cho d 

60n + 4 - 60n - 5 chia hết cho d

 4 - 5 chia hết cho d

=> -1 chia hết cho d 

=> d € Ư (-1)

Ư (-1) = { 1 ; -1 }

    Vậy A là phân số tối giản

b)*Tương tự*

15 tháng 4 2017

Gọi ucln là a

ta co:12n+1 chia het cho a

        30n+2chia het cho a

=>60n+5 chia het cho a

    60n+4 chia het cho a

=>60n+5-60n+4

    =1

vì trong 2 số,cả hai chia hết cho 1=>đo la pstg

tk cho mk nhé

mk hoc cung voi cau ne

mk la hoang anh hoc lop 6B thcs duong xa

14 tháng 4 2017

tời khó zậy ai ủng hộ tích nha

6 tháng 5 2018

A = ---------- ; B = ----------------

là sao ????

6 tháng 5 2018

câu hỏi đâu bạ và bạn viết lại cái đề bà nhé. mk nhìn vào ko hiẻu

8 tháng 4 2016

b) Gọi ƯCLN( 14n+17;21n+25)=d (d thuộc N*)

  Ta có : 14n+17 chia hết cho d và 21n+25 chia hết cho d

Suy ra 3(14n+17) chia hết cho d và 2(21n+25 ) chia hết cho d

Suy ra 42n+51 chia hết cho d và 42n +50 chia hết cho d

Suy ra (42n+51)- 42n- 50 chia hết cho d

             d=1

14n+17 và 21n+25 là 2 số nguyên tố cùng nhau

Vậy \(\frac{14n+17}{21n+25}\)là phân số tối giản

K mình nha

8 tháng 4 2016

a)Gọi ƯCLN(12n+1;30n+2)=d (d thuộc N*)

Ta có :12n+1chia hết cho d; 30n+2 chia hết cho d

   Suy ra 5(12n+1) chia hết cho n

             2(30n+2) chia hết cho n

   Suy ra 60n+5 chia hết cho n và 60n+4 chia hết cho n

Suy ra (60n+5)-(60n+4) chia hết cho d

            1 chia hết cho d

            d=1

   12n+1 và 30n+2 là 2 số nguyên tố cùng nhau

Vậy \(\frac{12n+1}{30n+2}\)là phhân số tối giản (đpcm)

24 tháng 3 2020

a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath

19 tháng 4 2017

A, Gọi d là ƯC(12n+1,30n+2). Ta có :

( 12n + 1 )  d => 5.( 12n + 1)  d hay ( 30n + 5 )  d

( 30n + 2 )  d => 2 . ( 30n + 2 )  d hay ( 30n + 4 )  d

=> ( 30n + 5 ) - ( 30n + 4 ) = 1

               => d = 1

Vậy :   là phân số tối giản 

B, 14n+17/21n+25

gọi d là UCLN ( 14n+17,21n+25)

có [3.(14n+17)]-[2.(21n+25)] chia hết cho d

=> 42n+51 - 42n - 50 chia hết cho d

=> 1 chia hết cho d

=> B tổi giản

14 tháng 7 2018

câu a

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

19 tháng 3 2018

a. A= \(\frac{12n+1}{30n+2}\)

Gọi d là ước chung của 12n +1 và 30n +2

\(\Rightarrow\)12n + 1 \(⋮\)d => 5 (12n + 1) \(⋮\)d    => 60n + 5  \(⋮\)d

\(\Rightarrow\)30n+2 \(⋮\)d = > 2 ( 30n + 2) \(⋮\)d =>   60n + 4\(⋮\)d

\(\Rightarrow\)(60n + 5) - 60n + 4 \(⋮\)d

\(\Rightarrow\)\(⋮\)d

\(\Rightarrow\)d= 1

\(\Rightarrow\)ƯCLN( 12n+ 1; 30n+2)

Vậy 12n+1/ 30n+2 là phân số tối giản

b. B= \(\frac{14n+17}{21n+25}\)

gọi d là ước chung của 14n+ 17 và 21n + 25

=> 14n+ 7 \(⋮\)d => 3(14n+17) \(⋮\)d => 42n + 51 \(⋮\)d

=> 21n+ 25 \(⋮\)d =.> 2(21n + 5) \(⋮\)d =.> 42n +  50 \(⋮\)d

=.> 42n + 51 - (42n + 50) \(⋮\)d

=> 1 \(⋮\)d

=> d= 1

vậy 14n + 17/  21n + 25 là phân số tối giản

19 tháng 3 2018

có chỗ ( 60n +5) - 60n + 4 là sai ấy nhé!

đúng là 60n + 5 - ( 60n + 4 ) mới đúng

nhớ k cho mik nha

7 tháng 5 2015

a) Gọi d là ƯCLN của 12n+1/30n+2, ta có 

12n+1 chia hết cho d và 30n+2 chia hết cho d, ta có 

(12n+1)-(30n+2) chia hết cho d

=> 5(12n+1)-2(30n+20 chia hết cho d

60n+5-60n-4 chia hết cho d

60n-60n+5-4 chia hết cho d

1 chia hết cho d => d=1 hay ƯCLN của 12n+1 và 30n+2

Vậy 12n+1/30n+2 là phân số tối giản  

câu b tương tự

đúng mình cái

14 tháng 7 2018

a

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

15 tháng 1 2018

a, Gọi d là ƯC ( 7n + 10 ; 5n + 7 ) 

Theo bài ra ta có : 7n + 10 chia hết cho d

=> 5 ( 7n + 10 ) chia hết cho d

=> 35n + 50 chia hết cho d ( 1 )

5n + 7 chia hết cho d 

=>7 ( 5n + 7 ) chia hết cho d

=> 35n + 49 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d 

=> 1 chia hết cho d

Vậy .....

b ) 14n + 3 và 21n + 4

Gọi d là ƯC ( 14n + 3 ; 21n + 4 )

Ta có : 14n + 3 chia hết cho d

=> 3 ( 14n + 3 ) chia hết cho d

=> 42n + 9 chia hết cho d ( 1 )

21n + 4 chia hết cho d

=> 2 ( 21n + 4 ) chia hết cho d

=> 42n + 8 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 42n + 9 ) - ( 42 n + 8 ) chia hết cho d

=> 1 chia hết cho d

Vậy ........